Partial Derivatives:-

$$
\begin{aligned}
& y=f(x): \frac{d f}{d x} \text { or } \frac{d y}{d x} \text { 又 } \\
& y=f(x, y): \frac{d f}{d x}, \frac{d f}{d y}=? \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} .
\end{aligned}
$$

Partial derivatives:-
If the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{2}, y_{0}\right)}{h} \text { exists, }
$$

it is called the partial derivative of f w.r.to x at $\left(x_{0}, y_{0}\right)$ and denoted by

$$
\left.\frac{\partial f}{\partial x}\right|_{\substack{x=x_{0} \\ y=y_{0}}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0} ; y_{0}\right)}{h .}
$$

II. y y., $\left.\quad \frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}=\lim _{k \rightarrow 0} \frac{f\left(x_{0}, y_{0}+k\right)-f\left(x_{0}, y_{0}\right)}{k .}$

Geometric :-

$$
\begin{aligned}
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)= & \text { rate of charge of } f \text { w.r.to } y \\
& \text { when } x \text { is fixed at } x .
\end{aligned}
$$ when x is fixed at x_{0}

f_{y}, f_{x}. Notation

$$
\begin{gathered}
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=\left.\frac{d}{d y} f\left(x_{0}, y\right)\right|_{y=y_{0}} \\
\vdots \quad \text { and } \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=\left.\frac{d}{d x} f\left(x, y_{0}\right)\right|_{x=x_{0}} .
\end{gathered}
$$

1. Find f_{y} and $f_{x}: f(x, y)=y \sin (x, y)$

$$
\begin{aligned}
& f_{x}=y^{2} \cos (x y) \\
& f_{y}=\sin (x y)+x y \cos (x y)
\end{aligned}
$$

ID: differentiability \Rightarrow continuous

2D: Not True!
Continuous but PAds do not exist:

$$
f(x, y)=\left\{\begin{array}{cc}
(x+y) \sin \left(\frac{1}{x+y}\right), & x+y \neq 0 \\
0, & x+y=0
\end{array}\right.
$$

Continuous at $(0,0)$.

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \sin \left(\frac{1}{h}\right)
$$

do not exist.

Not continuous but P.ds exist: -

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{3} y}{x^{6}+y^{2}} & ,(x, y) \neq(0,0) \\
0, & (x, y)=(0,0)
\end{array}\right.
$$

Not Continuous: Check on lines $y=m^{3}, x \neq 0$.

$$
\begin{aligned}
& f_{x}(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=0 \\
& f_{y}(0,0)=0
\end{aligned}
$$

Sufficient condition for Contimily:-
If $f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)$ exist, and one of f_{x} and f_{y} is bounded in a neighbourhood of $\left(x_{0}, y_{0}\right)$, then f is continuous.

WW

$$
f(x, y)= \begin{cases}0, & x y \neq 0 \\ 1, & x y=0\end{cases}
$$

Not continuous, P.ds exist: at $(0,0)$.

Total Derivative (Differentiability)
1D: $\quad f^{\prime}\left(x_{1}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$

or $f\left(x_{0}+h\right)-f\left(x_{0}\right)=h f^{\prime}\left(x_{0}\right)+\epsilon h \quad d y=f^{\prime}(x) d x$
cohere, $\in \rightarrow 0$ as $h \rightarrow 0$. differential
DD. $\quad z=f(x, y)$,

$$
\begin{aligned}
f\left(x_{0}+h, y_{0}+k\right)=f\left(x_{0}, y_{0}\right)+h f_{x}\left(x_{0}, y_{0}\right) & +k f_{y}\left(x_{0}, y_{0}\right)+\epsilon_{1} h \\
& +\epsilon_{2} k \cdots(*)
\end{aligned}
$$

with $\epsilon_{1}, \epsilon_{2} \rightarrow 0$ as $(h, k) \rightarrow(0,0)$

If a function $z=f(x, y)$ satisfies (*), it is said to be differentiable at $\left(x_{0}, y_{0}\right)$.
\Rightarrow The le
Alternative Deft:-
A fr $z=f(x, y)$ is said to be diff. at $\left(x_{0}, y_{0}\right)$ if the following holds:

$$
\begin{align*}
f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}, y_{0}\right)= & h f_{x}\left(x_{0}, y_{0}\right)+k f_{y}\left(x_{0}, y_{0}\right) \\
& +\in \sqrt{h^{2}+k^{2}} \ldots \tag{**}
\end{align*}
$$

where, $\quad \in \rightarrow 0$ as $(h, k) \rightarrow(0,0)$.

In limit form:

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{\left(f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}, y_{0}\right)-h f_{x}-k f_{y}\right)}{\sqrt{h^{2}+k^{2}}}=0
$$

Deft:: : The expression $\left.\left(h f_{x}+k f_{y}\right)\right|_{\left(x_{0}, y_{0}\right)}$ is called the total differential or differential of z at $\left(x_{0}, y_{0}\right)$, and denotes by $d z$ or $d f$.

$$
\begin{aligned}
& \quad d f=h f_{x}+k f_{y} \\
& \text { or } \quad d f_{x}+k f_{y} \\
& \quad d f=f_{x} \cdot d x+f_{y} \cdot d y
\end{aligned}
$$

The linear pant of the increment.

