Harmonic function:-
A function $z=f(x, y)$ is said to be harmonic of it satisfies Laplace's eq:

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0 \\
& \nabla^{2} f=0 \quad(\Delta f=0) \quad\left(\hat{i} \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}\right) \cdot()
\end{aligned}
$$

Bi-harmonic

$$
\begin{aligned}
& \Delta \Delta f=0 \\
\Rightarrow & \left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}\right)=0 \\
\Rightarrow & f_{x x x x}+2 f_{x x y y}+f_{y y y y}=0
\end{aligned}
$$

EXP: $\quad f(x, y)=e^{x} \sin y$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=e^{x} \sin y, \quad \frac{\partial^{2} f}{\partial x^{2}}=e^{x} \sin y \\
& \frac{\partial f}{\partial y}=e^{x} \cos y, \quad \frac{\partial^{2} f}{\partial y^{2}}=-e^{x} \sin y \\
& \therefore \quad \nabla^{2} f=0 \quad \text { nabla}{ }^{2} \text {) }
\end{aligned}
$$

(Potential f_{n} in electromagnetism).

Ext $\quad f(x, y)=x^{2}-y^{2}$

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

EXM : Constants or linear for ore harmonic. $\left(x^{2}-y^{2}\right)$ \& $x y$ one harmonic

Taylor'\$ Formula:-
Let, $f(x, y)$ and its P.ds are continuous upto $(n+1)^{\text {th }}$ order in some neighborhood of a point $\left(x_{0}, y_{0}\right) \in D$. Then, in that $n b d$,

$$
\begin{aligned}
f\left(x_{0}+h, y_{0}+k\right)= & f\left(x_{0}, y_{0}\right)+\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right) f\left(x_{0}, y_{0}\right) \\
+ & \left.\frac{1}{2!}\left(h^{2} f_{x x}+2 h k f_{x y}+k^{2} f_{y y}\right)\right|_{\left(x_{0}, y_{0}\right)} \\
+ & \frac{1}{3!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{3} f\left(x_{0}, y_{0}\right) \\
& +\cdots+\left.\frac{1}{n!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n} f\right|_{\left(x_{0}, y_{0}\right)} \\
& +\frac{1}{(h+1)!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n+1} f\left(x_{0}+c h, y_{0}+c k\right)
\end{aligned}
$$

for $c \in(0,1)$.
\# $\quad F(t)=f\left(x_{0}+t h, y_{0}+t k\right), t \in[0,1]$

$$
\begin{aligned}
& F^{\prime}(t)=\left(h \frac{\partial f}{\partial x}+k \frac{\partial f}{\partial y}\right)\left(x_{0}+t h, y_{0}+t k\right) \\
& F^{\prime \prime}(t)=\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{2} f\left(x_{0}+t h, y_{0}+t k\right)
\end{aligned}
$$

EXM:- Sestimate of $f(x, y)=x y$ at $f(0.8,2.1)$ using quadratic approx. at

$$
\begin{aligned}
& f(1,2) \\
& f(x, y)=f(1,2)+(x-1) f_{x}(1,2)+ \\
&+(y-2) f_{y}(1,2) \\
&+\frac{1}{2!}\left[(x-1)^{2} f_{x x}+2(x-1)(y-2) f_{x y}\right. \\
&\left.+(y-2) f_{y y}\right]
\end{aligned}
$$

So, $f(0.8,2.1)=2+2 .(-0.2)+0.1 .1+\frac{2 .(-0.2)(0.1)}{2}$

$$
=2-0.3-0.2
$$

$$
=1.5
$$

ExM:- $2^{\text {nd }}$ orde Tayler approx. of $f(x, y)=2 x^{3}+3 y^{3}-4 x^{2} y$ $\operatorname{about}(1,2)$. $\left|R_{2}\right| \leq \underline{B} \quad|x-1|<0.01,|y-2|<0.1$

$$
\begin{aligned}
& f(x, y)=2 x^{3}+3 y^{3}-4 x^{2} y \\
& f_{x}=6 x^{2}-8 x y \\
& f_{y}=9 y^{2}-4 x^{2}
\end{aligned} \begin{array}{ll}
f_{x x} & =12 x-8 y \\
f_{x y} & =-8 x \\
f_{y y} & =18 y
\end{array}
$$

$$
f_{x x x}=12, \quad f_{x x y}=-8, \quad f_{x y y}=0, \quad f_{y y y}=18
$$

$$
f(x, y)=f(1,2)+(x-1) f_{x}(1,2)+(y-2) f_{y}(1,2)
$$

$$
+\frac{1}{2}\left[(x-1)^{2} f_{x x}+2(x-1)(y-2) f_{x y}+(y-2)^{2} f_{y y}\right]
$$

$$
=18-10(x-1)+32(y-2)-2(x-1)^{2}-8(x-1)(y-2)
$$

$$
+18(y-2)^{7} .
$$

$$
\begin{aligned}
R_{2}=\frac{1}{3!}\left[(x-1)^{3} f_{x x x}+3(x-1)^{2}(y-2) f_{x x y}\right. & +3(x-1)(y-2)^{2} f_{x y y} \\
& \left.+(y-2)^{3} f_{y y y}\right]
\end{aligned}
$$

So, $\left|R_{2}\right| \leqslant \frac{1}{6}\left[(0.01)^{3} \cdot 12+3(0.01)^{2}(0.1)(8)+(0.1)^{3} 18\right]$.

