Maxima \& Minima:-

Let, $f(x, y)$ is defined on a neighbour hood of $\left(x_{0}, y_{0}\right)$

1) f has a local maxima at $\left(x_{0}, y_{0}\right)$ if $\exists a$ nod of $\left(x_{0}, y_{0}\right)$ in which

$$
f(x, y) \leq f\left(x_{0}, y_{0}\right)
$$

11) f has a local minima at $\left(x_{0}, y_{0}\right)$ if \exists a nod of $\left(x_{0}, y_{0}\right)$ in which

$$
f(x, y) \geqslant f\left(x_{0}, y_{0}\right)
$$

\Rightarrow The points of maxima/mininsa area called points of extrema.

Theorem (first derivative test)
If $f(x, y)$ has a local maxima/minime at an $\left(x_{0}, y_{0}\right)$, and if $p . d s$ exist $\left(x_{0}, y_{0}\right)$, then

$$
f_{x}\left(x_{0}, y_{0}\right)=0=f_{y}\left(x_{0}, y_{0}\right)
$$

Critical point or stationary point:-
The points (x, y) for which $f_{x}(x, y)=0=f_{y}(x, y)$ are called critical pt or stationary pt.

Saddle point:-
A differentiable function $z=f(x, y)$ has a critical pt a saddle pt. at $\left(x_{0}, y_{0}\right)$ if any $n b d$ of $\left(x_{0}, y_{0}\right)$ there are pt for which both

$$
\begin{aligned}
& f(x, y)>f\left(x_{0}, y_{0}\right) \text { and } \\
& f(x, y)<f\left(x_{0}, y_{0}\right)
\end{aligned}
$$

hot. The pt. $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is called a saddle pt. of the surface.

EXC:

$$
\begin{aligned}
& f(x, y)=x^{2}-y^{2} \\
& f_{x}=2 x=0 \\
& f_{y}=-2 y=0
\end{aligned} \quad \Rightarrow \quad(x, y)=(0,0) .
$$

So,
But, along $y=0, \quad f(x, 0)=x^{2}>0=f(0,0)$

$$
\text { and along } x=0, \quad f(0, y)=-y^{2}<0=f(0,0)
$$

Therefor, the for has a saddle pt. at $(0,0)$.

Theorem:- (2nd derivative test):
Suppose $f(x, y)$ and its 1 st and $2^{\text {nd }}$ order Pods. are continuous at a critical pt. $\left(x_{0}, y_{0}\right)$. Then,

1) f has a local maxima at $\left(x_{0}, y_{0}\right)$ if $f_{x x}<0$ and

$$
f_{x x} f_{y y}-f_{x y}^{2}>0 \text { at }\left(x_{0}, y_{0}\right)
$$

11) f has a local minima at $\left(x_{0}, y_{0}\right)$ if $f_{x x} 6>0$ and

$$
f_{x x} f_{y y}-f_{x y}^{2}>0 \text { at }\left(x_{0}, y_{0}\right)
$$

ii) f has a saddle pt at $\left(x_{0}, y_{0}\right)$ if $f_{x x} f_{y y}-f_{x y}^{2}<0$.

Nv) The test is inconclusive if $f_{x x} f_{y y}-f_{x y}{ }^{2}=0$. $\left(x_{0}, y_{0}\right)$.

ExC: $\quad f(x, y)=x y^{2}$

$$
\begin{array}{ll}
& f_{x}=y^{2}=0 \Rightarrow y=0 \\
& f_{y}=2 x y=0 \Rightarrow x=0 \quad \Rightarrow(0,0) \text { is a critical pt. } \\
& f_{x x}=0, \quad f_{y y}=2 x . \quad f_{x y}=2 y \\
\Rightarrow & f_{x x} f_{y y}-f_{x y}^{2}=0 . \quad \text { Inconchisive. }
\end{array}
$$

ExaM: $\quad f(x, y)=x y$
$f_{x}=y=0 \Rightarrow(0,0)$ is a critical pt.

$$
\begin{aligned}
& f_{y}=x \\
& f_{x y}=0, f_{y y}=0, \quad f_{x y}=1 \\
& f_{x x} f_{y y}-f_{x y}^{2}=-1<0 \quad \text { so, fhas a saddle } \\
& \text { pt. at }(0,0)
\end{aligned}
$$

EXM:- Find the absolute maximum or minimum of

$$
\begin{aligned}
& f(x, y)=2+2 x+2 y-x^{2}-y^{2} \text { on the triangle } \\
& x=0, y=0, \quad x+y=9 .
\end{aligned}
$$

$\Rightarrow \quad f$ is differentiable, so f can be extremism at the interior pts or along the boundary.

$$
\begin{gathered}
f_{x}=2-2 x=0 \\
f_{y}=2-2 y=0 \\
f_{x x}=-2, \quad f_{y y}=-2, \quad f_{x y}=0 .
\end{gathered}
$$

So, $f_{x x}<0$ and $f_{x x} f_{y y}-f_{x y}^{2}=4>0$

Therefore, f has a local maxima at $(1,1)$ and $\quad f(1,1)=4$.

We need to check along the boundary.
Along $O A: \quad y=0 \Rightarrow$

$$
g(x)=f(x, 0)=2+2 x-x^{2}, \quad 0 \leq x \leq 9
$$

$$
g^{\prime}(x)=2-2 x \quad \Rightarrow \quad x=1
$$

$$
g^{\prime \prime}(x)=-2<0
$$

Therefore g has a local max at 1 and $g(1)=3$.

$$
\begin{aligned}
\operatorname{Max} \text { along the } b d r y & =\max \{g(0), g(1), g(g)\}=g(1)=3 . \\
\operatorname{Min} \quad . \quad . \quad & =\operatorname{Min}\{g(0), g(9),\} g(t)\}=-61 .
\end{aligned}
$$

Along $O B: \quad x=0 \Rightarrow$

$$
\begin{aligned}
& h(y)=f(0, y)=2+2 y-y^{2} \\
& \therefore h^{\prime}(y)=2-2 y=0 \Rightarrow y=1 \\
& \quad h^{\prime \prime}(y)=-2<0
\end{aligned}
$$

So, h has a local max at $1 . \& h(1)=3$.
Along $A B: y=-x+9$

$$
\text { So, } \begin{array}{rl}
k(x)=f(x,-x+9)=2+2 x & 2(x-9)-x^{2} \\
& -(x-9)^{2} \\
=-2 x^{2}+8 x & -61 \\
\therefore k^{\prime}(x)=-4 x+18=0 \Rightarrow \quad x=9 / 2 \\
k^{\prime \prime}(x)=-4<0 \Rightarrow & y=9 / 2
\end{array}
$$

So, k has max at $9 / 2=k(9 / 2)=-41 / 2$

So, the max is $f(1,1)=4$ and the mir is $f(0,9)=f(9,0)=-61$.

ExM: Find the absolute maximin of

$$
f(x, y)=3 x^{2}+y^{2}-x \text { over } 2 x^{2}+y^{2} \leq 1
$$

$$
\begin{aligned}
\quad f_{x} & =6 x-1=0 \\
f_{y} & =2 y=0
\end{aligned} \Rightarrow x=1 / 6, y=0
$$

The critical pt is $\left(\frac{1}{6}, 0\right)$.

$$
\begin{aligned}
& f_{x x}=6, \quad f_{y y}=2, \quad f_{x y}=0 \\
& \Rightarrow \quad f_{x x}>0, \quad f_{x x} f_{y y}-f_{x y}^{2}=12>0
\end{aligned}
$$

Hence, f has a local minima at $\left(\frac{1}{6}, 0\right), f\left(\frac{1}{6}, 0\right)$. Also, $\left(\frac{1}{6}, 0\right)$ is inside the region $2 x^{2}+y^{2} \leq 1$ We need to test along the boundary: $2 x^{2}+y^{2}=1$.

$$
\begin{gathered}
\Rightarrow y^{2}=1-2 x^{2} \quad-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} \\
g(x)=f\left(x, \pm \sqrt{1-2 x^{2}}\right)=3 x^{2}+\left(1-2 x^{2}\right)-x \\
=x^{2}-x+1, \quad-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} \\
\therefore g^{\prime}(x)=2 x-1=0 \quad x=1 / 2 \\
\therefore g^{\prime \prime}(x)=2>0 .
\end{gathered}
$$

So, g has min . at $x=1 / 2$ and $g\left(\frac{1}{2}\right)=3 / 4$.
Arno, $g\left(-\frac{1}{\sqrt{2}}\right)=\frac{1}{2}+\frac{1}{\sqrt{2}}+1=\frac{3}{2}+\frac{1}{\sqrt{2}}$

$$
g\left(+\frac{1}{\sqrt{2}}\right)=\frac{1}{2}-\frac{1}{\sqrt{2}}+1=\frac{3}{2}-\frac{1}{\sqrt{2}}
$$

So, min. is $f\left(\frac{1}{6}, 0\right)=-\frac{1}{12}$, max is $f\left(-\frac{1}{\sqrt{2}}, 0\right)=\frac{3+\sqrt{2}}{2}$.

Lagrange Multipliers: -
Constrained Optimization

$$
\operatorname{Max} / \operatorname{Min} \quad f(x, y, z)
$$

with the condition:

$$
\left\{\begin{array}{l}
g(x, y, z)=0 \\
h(x, y, z)=0 \\
\vdots
\end{array}\right.
$$

Consider the auxiliary fry

$$
F\left(x, y, z, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)=f+\lambda_{1} g+\lambda_{2} g h+\cdots
$$

Now, by necessary cinder of extrema

$$
\frac{\partial F}{\partial x}=0=\frac{\partial F}{\partial y}=\frac{\partial F}{\partial z}
$$

λ_{i} are called Lagrange's multipliers.
EXM: Find the max of $x^{2}+y^{2}+z^{2}$ subject to $x y z=a^{3}$.
Consider the auxiliary function

$$
F(x, y, z, \lambda)=x^{2}+y^{2}+z^{2}+\lambda\left(x y z-a^{3}\right)
$$

For extremum,

$$
\begin{aligned}
& \quad \frac{\partial F}{\partial x}=0, \frac{\partial F}{\partial y}=0, \quad \frac{\partial F}{\partial z}=0 \\
& \Rightarrow 2 x+\lambda y z=0,2 y+\lambda x z=0,2 z+\lambda x y=0 \\
& \Rightarrow \quad \lambda x y z=-2 x^{2}=-2 y^{2}=-2 z^{2} \\
& \Rightarrow x^{2}=y^{2}=z^{2} \quad \Rightarrow x^{6}=a^{6}=y^{6}=z^{6}
\end{aligned}
$$

So, $(a, a, a),(a,-a,-a),(-a, a,-a),(-a,-a, a)$ are the solution.

The value of the function at each of there

$$
\begin{gathered}
p t_{s}=3 a^{2} \\
A=\left[\begin{array}{lll}
f_{x x} & f_{x y} & f_{x z} \\
f_{y x} & f_{y y} & f_{y z} \\
f_{z x} & f_{z y} & f_{z z}
\end{array}\right]=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
\end{gathered}
$$

is positive definite \& $f_{x x}, f_{y y}, f_{z z}>0$
So, the fr has local minima at all thither 1 pts.
$\frac{\text { Tut } 3}{27}$
Extreme value of $f(x, y)=x^{2}+2 y^{2}$ on $x^{2}+y^{2}=1$
Consider $F(x, y)=\left(x^{2}+2 y^{2}\right)+\lambda\left(x^{2}+y^{2}-1\right)$
For extremum,

$$
\begin{gathered}
\frac{\partial F}{\partial x}=0_{0}=\frac{\partial F}{\partial y} \\
\Rightarrow \quad 2 x(1+\lambda)=0, \quad 2(2+\lambda) y=0
\end{gathered}
$$

So, either $x=0$ or $\lambda=-1$ and $y=0$ or $\lambda=-2$
Let, $x=0 \Rightarrow y= \pm 1, \lambda=-2$
or $\lambda=-1 \Rightarrow x_{y=0}^{80}, x= \pm 1$
So, $(\pm 1,0)$ and $(0, \pm 1)$ are the solutions.
At these pts. the values one $f(\pm 1,0)=1$: min

$$
f(0, \pm 1)=2 \quad \therefore \text { max }
$$

28
Find the pts. on $x^{2}+y^{2}+z^{2}=4$ closest \& farthest from $(3,1,-1)$

Max or Min $f(x, y, z)=(x-3)^{2}+(y-1)^{2}+(z+1)^{2}$ s.t.

$$
x^{2}+y^{2}+z^{2}=4
$$

Consider $\quad F(x, y, z, \lambda)=f+\lambda\left(x^{2}+y^{2}+z^{2}-4\right)$

For extremum, $\quad \frac{\partial F}{\partial x}=0=\frac{\partial F}{\partial y}=\frac{\partial F}{\partial z}$

$$
\begin{gathered}
\Rightarrow \quad \not 2(x-3)+\not 2 x \lambda=0, \quad \not(y-1)+\not x \lambda y=0 \\
\& \not x(z+1)+\not 2 z \lambda=0
\end{gathered}
$$

$$
\therefore \quad x=\frac{3}{1+\lambda}, \quad y=\frac{1}{1+\lambda}, \quad z=\frac{-1}{1+\lambda}
$$

$$
\underline{\lambda \neq-1} \quad: \quad x^{2}+y^{2}+z^{2}=4 \quad \Rightarrow \quad \lambda=-1 \pm \frac{\sqrt{11}}{2}
$$

$$
\begin{aligned}
\therefore \quad & =-1 \pm \frac{\sqrt{11}}{2} \Rightarrow\left(\frac{6}{\sqrt{11}}, \frac{2}{\sqrt{11}},-\frac{2}{\sqrt{11}}\right) A \\
\lambda & =-1-\frac{\sqrt{11}}{2} \Rightarrow\left(-\frac{6}{\sqrt{11}},-\frac{2}{\sqrt{11}}, \frac{2}{\sqrt{11}}\right) B
\end{aligned}
$$

check $f(x, y, z)$: A is closest, B is farthest.

29 Let, $x=$ length, $y=$ width, $z=$ height
Max: $V=x y z$ subject to

$$
2 x z+2 y z+x y=12
$$

Consider $F(x, y, z, \lambda)=x y z+\lambda(2 x z+2 y z+x y-12)$
For extremum,

$$
\frac{\partial F}{\partial x}=0=\frac{\partial F}{\partial y}=\frac{\partial F}{\partial z}
$$

\Rightarrow

$$
\begin{aligned}
y z+\lambda(2 z+y) & =0 \\
x z+\lambda(2 z+x) & =0 \\
x y+\lambda(2 x+2 y) & =0 \\
\& \quad 2 x z+2 y z+x y & =12
\end{aligned}
$$

If $\lambda \overline{\overline{ }} 0: \quad x y=y z=z x=0 \Rightarrow$ a contradiction.
So, $\lambda \neq 0$.

$$
\begin{gathered}
x y z=-\lambda(2 x z+x y)=-\lambda(2 z y+x y) \\
\Rightarrow z(x-y)=0
\end{gathered}
$$

$$
z \neq 0,(v \neq 0) \quad \text { so, } x=y
$$

Abs,

$$
\begin{aligned}
& x y z=-\lambda(2 y z+x y)=-\lambda(2 x z+2 y z) \\
& \Rightarrow x(y-2 z)=0 \\
& x \neq 0 \Rightarrow y=2 z=x . \\
& 4 z^{2}+4 z^{2}+4 z^{2}=12^{\circ} \Rightarrow z^{2}=1 \Rightarrow z=1 . \\
& \therefore x=2=y
\end{aligned}
$$

Hence,

$$
\begin{aligned}
V & =x y z \\
& =4 .
\end{aligned}
$$

