Multiple Integrals:-

$$
\int_{a}^{b} f(x) d x
$$

f : piecewise continuous

BCM Mathematics-1

Domain: bounded, unbounded, infinite intervals.

Extend it for $f(x, y)$ in $Q \leq\{(x, y): a \leq x \leq b, c \leq y \leq d\}$

Consider two partition of $[a, b]$ and $[e, d]$ y then, $P_{1} \times P_{2}$ would be a partition of Q.

A small piece of area would be $\Delta A_{i f}=\Delta x_{i} .4 y_{j}{ }_{j}$

$$
i=1, \ldots, n
$$

$$
J=1, \ldots m
$$

Conside the sum, $S_{n m}=\sum_{i}^{n} \sum_{j}^{m} f\left(x_{i}, y_{j}\right) \Delta A_{i j}$
If $\lim _{\Delta A_{i \sigma} \rightarrow 0} S_{n m}$ exists, the limit is called the $n, m \rightarrow \infty$ double integral, and is denoted by

$$
\iint_{Q} f(x, y) d x d y \text { or } \iint_{Q} f(x, y) d A
$$

Note: If $f(x, y)$ is continuous on Q, then the double integral exists.

If $f(x, y)$ is non-negative, we may interpret the double integral of f over a region D as the volume of the solid prism bounded by D and the surface $z=f(x, y)$.

Iterated or Repeated Integrals

$$
\begin{aligned}
& R=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\} \\
& \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y \quad \text { Double } \\
& I_{1}=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x \\
& \& I_{2}=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y,
\end{aligned}
$$

Fubini'\& theorem (Part 1)
If $f(x, y)$ is continuous on the rectangle R., then

$$
\iint_{Q} f(x, y) d A=I_{1}=I_{2}
$$

EM:
Ex:-

$$
\begin{aligned}
& R=[-1,1] \times[0, \pi / 2] \\
& \iint_{R}\left(x \sin y-y e^{x}\right) d x d y
\end{aligned}
$$

$$
\begin{aligned}
I_{2} & =\int_{0}^{\pi / 2}\left[\int_{-1}^{1}\left(x \sin y-y e^{x}\right) d x\right] d y \\
& =\int_{0}^{\pi / 2}\left[\frac{x^{2}}{2} \sin y-y e^{x}\right]_{-1}^{1} d y \\
& =-\int_{0}^{\pi / 2} y\left(e-\frac{1}{e}\right) d y=-\frac{1}{2} \frac{\pi^{2}}{4}\left(e-\frac{1}{e}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { EXP: } f(x, y)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \int_{0}^{1} \int_{0}^{1} f(x, y) d x d y=\pi^{1 / 4} \\
& \int_{0}^{1} \int_{0}^{1} f(x, y) d y d x=\pi / 4 \\
& \text { 2. } f(x, y)=\left\{\begin{array}{l}
\frac{x-y}{(x+y)^{3}}, \\
0,
\end{array}\right. \\
& \int_{0}^{1} \int_{0}^{1} f\left(x d x d y+\int_{0}^{1} \int_{0}^{1}\right. \\
& -\frac{1}{2}
\end{aligned}
$$

Check I_{1}
H.W

$$
\int_{0}^{1} \int_{1}^{3} \frac{d x d y}{(a x+b y)^{2}}
$$

General Region:

$$
\text { 1) } \quad a \leq x \leq b, \quad g_{1}(x) \leq y \leq g_{2}(x)
$$

ii) $c \leq y \leq d, \quad h_{1}(y) \leq x \leq h_{2}(y)$.

Fubini'\$ theorem (Pout 2)
Let $f(x, y)$ is continúaus on D.

1) If D is defined by $a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)$, with $g_{1} \& g_{2}$ continuous on $[a, b]$, then

$$
\iint_{D} f(x, y) d A=\int_{a}^{b}\left[\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y\right] d x .
$$

11) If D is defined by $c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)$ and h_{1}, h_{2} continuous on $[c, d]$, then.

$$
\iint_{D} f(x, y) d A=\int_{c}^{d}\left[\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x\right] d y .
$$

EXM:- Change the order of integration

$$
\begin{gathered}
I=\int_{0}^{1}\left[\int_{x^{2}}^{x} f(x, y) d y\right] d x . \\
I=\int_{0}^{1}\left[\int_{y}^{\sqrt{y}} f(x, y) d x\right] d y
\end{gathered}
$$

$E_{X M}:$
$\iint_{D}(x+y)^{2} d x d y: D$ is bounded by lines Joining $(0,0),(0,1) \&(2,2)$

$$
\begin{aligned}
& \int_{0}^{2}\left[\int_{0}^{x / 2+1}(x+y)^{2} d y\right] d x \\
= & \int_{0}^{2}\left[\frac{(x+y)^{3}}{3}\right]_{0}^{x} d y \quad y=x=\frac{y}{2}+1 e^{(2,2)} \\
= & \int_{0}^{2}\left(\frac{5 y^{3}}{3}-\frac{y^{3}}{3}\right) d y=\frac{7}{3}\left[\frac{y}{4}\right]_{0}^{2}=\frac{16 . \pi}{12}=\frac{4.7}{3}
\end{aligned}
$$

Change of variables:-

$$
\begin{aligned}
& \int_{0}^{1 \pi / 4} \frac{d x}{\sqrt{1+x^{2}}} \\
& x=\tan \theta \\
&=\sec ^{2} \theta d \theta \\
&=\int_{0}^{\pi / 4} \frac{\sec ^{2} \theta d \theta}{\sec \theta}=\int_{0}^{\pi / 4} \sec \theta d \theta \\
&= \ln [\sec \theta+\tan \theta \mid]_{0}^{\pi / 4} \\
&=\ln (1+\sqrt{2})
\end{aligned}
$$

\# let, $x=x(u, v) \& y=y(u, v)$ are continuously differentiable frs that maps $1-1$ from D_{1} in uplane onto D in $x-y$ plane.

Then,

$$
\iint_{D} f(x, y) d x d y=\iint_{D_{1}} f(x(u, v), y(u, v))|J|
$$

where,

$$
J(u, v)=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=x_{u} y_{v}-x_{v} y_{u}
$$

is called the Jacobian of the transformation.

ExT:-

$$
\begin{aligned}
x & =r \cos \theta, \quad y=r \sin \theta . \\
J(r, \theta) & =\left|\begin{array}{cc}
x_{r} & x_{\theta} \\
y_{r} & y_{\theta}
\end{array}\right| \\
& =\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r .
\end{aligned}
$$

So,

$$
\iint_{D} f(x, y) d x d y=\iint_{D_{1}} F(r, \theta) r d r d \theta
$$

Th
$\frac{14}{17}$

$$
\begin{aligned}
& \iint_{D} x y d A \\
= & \int_{0}^{a} \int_{\theta=0}^{\pi / 2} r^{2} \cos \theta \sin \theta \cdot r d r d \theta \\
= & -\frac{1}{2} \int_{0}^{a} r^{3}\left[\frac{\cos (2 \theta)}{2}\right]_{0}^{\pi / 2} d r \\
= & -\frac{1}{4} \int_{0}^{a} r^{3}(-1-1) d r=\frac{1}{2} \frac{a^{4}}{4}=\frac{a^{4}}{8} .
\end{aligned}
$$

Triple Integral:-
Analogously to double integral, we define triple integral

$$
\begin{aligned}
& \int_{V} f(x, y, z) d v=\iiint_{V} f(x, y, z) d x d y \cdot d z \\
& \int_{V} f(x, y, z) d v={ }_{v} \lim _{\Delta v_{i, k} \rightarrow 0} \sum_{i, J, k} f\left(x_{i}, y_{j}, z_{k}\right) \Delta v_{i_{j k}},
\end{aligned}
$$

it exists.

Volume

$$
\int_{v} d v \quad o r \iiint_{v} d x d y d z
$$

Ex:
Tut 4
21.

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x y z d z d y d x \\
& =\left(\int_{0}^{1} x d x\right) \cdot\left(\int_{0}^{1} y d y\right)\left(\int_{0}^{1} z d z\right) \\
& =\left[\frac{x^{2}}{2} \frac{y^{2}}{2} \cdot \frac{z^{2}}{2}\right]_{0}^{1}=\frac{1}{8}
\end{aligned}
$$

222

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \int_{z=\sqrt{x^{2}+y^{2}}}^{2} x y z d z d y d x \\
& \int_{z=\sqrt{x^{2}+y^{2}}}^{2} x y z d z=\left[\frac{1}{2} x y z^{2}\right]_{\sqrt{x^{2}+y^{2}}}^{2} \\
&=\frac{1}{2} x y\left(4-x^{2}-y^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int_{y=0}^{1}\left(2 x y-\frac{1}{2} x^{3} y-\frac{1}{2} x y^{3}\right) d y \\
& =x-\frac{1}{2} x^{2} x-\frac{1}{4} x^{3}-\frac{1}{8} x=\frac{7}{8} x-\frac{1}{4} x^{3} \\
& \& \int_{x=0}^{1}\left(\frac{7}{8} x-\frac{1}{4} x^{3}\right) d x=\left[\frac{7}{10} x^{2}-\frac{1}{16} x^{4}\right]_{0}^{1}=\frac{3}{8} .
\end{aligned}
$$

$$
\begin{aligned}
& \int_{x=0}^{1} \int_{y=x}^{1} \int_{z=y}^{1} x d z d y d x . \\
& \int_{z=y}^{1} x d z=x(1-y) \\
& \int_{y=x}^{1} x(1-y) d y=x\left[\frac{(1-y)^{2}}{2}\right]_{x}^{1}=\frac{+x(1-x)^{2}}{2}=+\frac{x\left(1-2 x+x^{2}\right)}{2}
\end{aligned}
$$

So, $\int_{0}^{1}\left(\frac{x}{2}-x^{2}+\frac{x^{3}}{2}\right) d x=\frac{1}{4}-\frac{1}{3}+\frac{1}{8}=\frac{1}{24}$.

24

$$
\begin{aligned}
V & =\int_{-1}^{1} \int_{-1}^{1} \int_{z=0}^{x^{2}+x y} d z d y d x \\
& =\int_{-1}^{1} \int_{-1}^{1}\left(x^{2} b+x y\right) d y d x \\
& =\int_{-1}^{1}\left[x^{2} y+\frac{x y^{2}}{2}\right]_{-1}^{1} d x \\
& =\int_{-1}^{1} 2 x^{2}=\frac{2}{3}\left[x^{3}\right]_{-1}^{1}=\frac{4}{3}
\end{aligned}
$$

