Bernoulli Equation:

$$
\frac{d y}{d x}+P(x) y=R(x) y^{n}, \quad n \in \mathbb{R}
$$

Multiply both sides by y^{-n}.

$$
\begin{equation*}
y^{-n} \frac{d y}{d x}+P(x) \frac{1}{y^{n-1}}=R(x) \tag{1}
\end{equation*}
$$

Let, $v(x) v=\frac{1}{y^{n-1}}$

$$
\therefore \frac{d u}{d x}=\frac{(1-n)}{y^{n}} \frac{d y}{d x} .
$$

So, (1) \Rightarrow

$$
\frac{d v}{d x}+(1-n) P(x) v=(1-n) R(x)
$$

$$
\frac{d v}{d x}+P_{1}(x) v=R_{1}(x): \text { Standard Linear ODE. }
$$

EXT:

$$
\begin{aligned}
& \frac{d y}{d x}-y=y^{2}(\sin x+\cos x) \\
& \frac{1}{y^{2}} \frac{d y}{d x}-\frac{1}{y}=(\sin x+\cos x)
\end{aligned}
$$

Let, $\quad \frac{1}{y}=v \quad \therefore-\frac{1}{y^{2}} \frac{d y}{d x}=\frac{d v}{d x}$

$$
\begin{aligned}
& \Rightarrow+\frac{d v}{d x}+v=-(\sin (x)+\cos x) \\
& \text { I.F. }=e^{+\int d x}=e^{+x}
\end{aligned}
$$

Hence, $\int d\left(v e^{+x}\right)=-\int e^{+x} \sin x d x-\int e^{+x} \cos x d x+C$

$$
\therefore v e^{-x}=-e^{+x} \sin x+\int \cos x / e^{-x} d x-\int e^{-x} \cos x d x+e
$$

$$
\begin{aligned}
& \therefore v e^{+x}=-e^{+x} \sin x+c \\
& \therefore \quad 1=y\left(\sin x-c e^{-x}\right)
\end{aligned}
$$

HoW.

$$
\frac{d y}{d x}+y=x y^{3} \quad, \quad x y^{\prime}-2 y=4 x^{3} y^{1 / 2}
$$

and Order Linear ODE:-

$$
\begin{align*}
& \mathbb{F}\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0 \\
& y^{\prime \prime \prime}+P(x) y^{\prime}+Q(x) y=R(x): \text { standard form } \tag{*}\\
& \cdots\left(x^{\prime}\right)
\end{align*}
$$

If $R(x)=0$, (*) is called homogeneous, else non-homogeneow.

General Higher order linear ODF:-

$$
\begin{equation*}
a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n}(x) y=f(x) \tag{*}
\end{equation*}
$$

If $y_{1}, y_{2}, y_{3} \ldots, y_{n}$ are n solutions of the homegenous eqn.. Then, $c_{1} y_{1}+\cdots+c_{n} y_{n}$ is also a sole.. of the same. (**)
(Superposition).
If $y_{1}, y_{2} \ldots, y_{n}$ are linearly independent, then, they are called the fundamental poly of (*) with $f=0$.
\# $y_{1}(x), \ldots, y_{n}(x)$ are lin. index. if.

$$
\begin{aligned}
& c_{1} y_{1}(x)+\cdots+c_{n} y_{n}(x)=0 \\
& \Rightarrow c_{1}=0=c_{2}=\cdots=c_{n} .
\end{aligned}
$$

(1) Wronskian of m functions $g_{1}(x), \ldots, g_{m m}(x)$ is

$$
W\left(g_{1}, \ldots, g_{m}\right)=\left|\begin{array}{llll}
g_{1}(x) & g_{2}(x) & \ldots & g_{m}(x) \\
g_{1}^{\prime}(x) & \cdots & & g_{m}^{\prime}(x) \\
\ddots_{1}^{(n-1)} & & & g_{m}^{(n-1)}(x)
\end{array}\right|
$$

$\Rightarrow g_{1}(x), \ldots, g_{m}(x)$ are lin. index. Af

$$
w\left(g_{1}, \ldots, g_{m}\right) \neq 0 . \forall x
$$

(*) Not true for non-homogenears or non-lin. eqn

$$
\begin{array}{ll}
y^{\prime \prime}+y=1, & y_{1}(x)=1+\cos x \\
& y_{2}(x)=1+\sin x
\end{array} \text { are sols. }
$$

But, not $2 y_{1}(x)$ ar $5 y_{2}(x)$.
\# $y y^{\prime \prime}-x y^{\prime}=0$ has room $y_{1}=x^{2}, y_{2}=1$. But, \% $-x^{2}$ is not a som.

IV:

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x), \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=z_{0}
$$

BUR: $\quad y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x), \quad y\left(x_{0}\right)=y_{0}, \quad y_{0}\left(x_{1}\right)=y_{1}$.

General som: :-
If $y_{1}(x) \& y_{2}(x)$ are two lin-indep. So ln of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, then, $y(x)=C_{1} y_{1}+c_{2} y_{2}$ is a general sole of the ODE.

ExaM:-

- $e^{x}, e^{2 x}, e^{3 x}$ are fundamental so bm of

$$
\begin{aligned}
& y^{\prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0 \\
& y^{\prime}=2 e^{2 x}, y^{\prime \prime}=4 e^{2 x}, y^{\prime \prime \prime}=8 e^{2 x} \\
& y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=8 e^{2 x}-24 e^{2 x}+22 e^{2 x}-6 e^{2 x} \\
&=0 .
\end{aligned}
$$

Abs,

$$
\begin{aligned}
w\left(e^{x}, e^{2 x}, e^{3 x}\right) & =\left|\begin{array}{lll}
e^{x} & e^{2 x} & e^{3 x} \\
e^{x} & 2 e^{2 x} & 3 e^{3 x} \\
e^{x} & 4 e^{2 x} & 9 e^{3 x}
\end{array}\right| \\
& =6 e^{x} / e^{5 x}-6 e^{2 x} \cdot e^{4 x}+22 e^{3 x} \cdot e^{3 x} \\
& =2 e^{6 x} \neq 0
\end{aligned}
$$

So, they ore lin indef. So, fundamental sone.
Linear Homogeneous Equation with constant coefficient:-

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

If $a=0, \& b \neq 0, \quad y^{\prime}=-\frac{c}{b} y$

$$
\begin{aligned}
& \Rightarrow \int \frac{d y}{y}=-\frac{c}{6} \int d x+k \\
& \Rightarrow \quad \ln y=-\frac{c}{6} x+k . \\
& \therefore \quad y=A e^{-c / 6 x}
\end{aligned}
$$

The sole is of the form $y=R e^{m x}$

So, it is natural to fry $y=e^{m x}$ for (1).
Then,

$$
\begin{aligned}
y^{\prime} & =m e^{m x} \\
\& y^{\prime \prime} & =m^{2} e^{m x}
\end{aligned}
$$

So, $\quad\left(a m^{2}+b m+c\right) e^{m x}=0$

$$
\Rightarrow \quad a m^{2}+b m+c=0
$$

This is called the auxiliary equation.
Now, the roots are

$$
m=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=m_{1}, m_{2}
$$

We have three cases:

Case-I: Two distinct real roots $\left(m_{1} \neq m_{2}\right)$
Them, the corresponding general sown is

$$
y=c_{1} e^{m_{1} x}+c_{e} e^{m_{2} x}
$$

ExP: $\quad y^{\prime \prime}+y^{\prime}-2 y=0$

$$
\begin{aligned}
& m^{2}+m-2=0 \\
\Rightarrow & m=-2,1, \quad y=c_{1} e^{x}+c_{2} e^{-2 x}
\end{aligned}
$$

Case-II Two real but equal roots. $\left(m_{1}=m_{2}\right)$
So, one roots is $y_{1}=e^{m_{1} x}$. The other indep. root. $y_{2}=x e^{m_{1} x}$
check y_{2} is afro a root of (1) and $\left\{y_{1}, y_{2}\right\}$ are independent.

So, the general sole is

$$
y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x}
$$

EXC:

$$
\begin{aligned}
& y^{\prime \prime}-6 y^{\prime}+9 y=0 . \\
& m^{2}-6 m+9=0 \Rightarrow(m-3)^{2}=0 \\
& m=3,3 . \\
& y=c_{1} e^{3 x}+c_{2} \times e^{3 x}
\end{aligned}
$$

Case-II: Complex roots.

$$
m=p \pm i q \quad \text { if }\left(b^{2}-4 a c<0\right)
$$

Then, the sols becomes:

$$
\begin{aligned}
y & =c_{1} e^{(p+i q) x}+c_{2} e^{(p-i q) x} \\
& =e^{p x}\left(c_{1} e^{i q x}+c_{2} e^{-i q x}\right) \\
& =e^{p x}\left(\left(c_{1}(\cos (q x)+i \sin (q x))+\left(c_{2} \cos (q x)-i c_{2} \sin (q x)\right)\right)\right. \\
& =e^{p x}(A \cos (q x)+B \sin (q x))
\end{aligned}
$$

ExaM:

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}+2 y=0 \\
m=-1 \pm i \\
y=e^{-x}(A \cos x+B \sin x)
\end{gathered}
$$

