Curve Sketching or Curve tracing:
Sketch or trace the graph!

$$
\begin{array}{ll}
y=f(x) & \text { or } f(x, y)=0 \\
y=x^{2}, & y^{2}\left(x^{2}+1\right)=\left(1-x^{2}\right)
\end{array}
$$

1. Domain \& range

2. Check symmetry
1) $\quad g(x,-y)=g(x, y)$: symmetric w.r.to x axis

$$
y^{2}=x
$$

11) $\quad g(-x, y)=g(x, y)$: symm. w.r. to y-axis.

$$
y=\cos (x) .
$$

iii) $\quad f(x, y)=f(-x,-y)$: symm in 1st and $3^{2 d}$ quadrant.

$$
y=\frac{1}{x}
$$

4. Check whether the f_{n} is even or odd.

$$
\begin{array}{lr}
f(x)=f(-x) & \text { or } f(-x)=-f(x) \\
y=\cos (x), x^{3} & y=\sin (x), x^{2}
\end{array}
$$

6. Convexity or concavity:
determine interval in which $f^{\prime \prime}$ tee or -ve.
Q.7. Find points of inflection: $f^{\prime \prime}=0$, if exists.

甭5. Critical points, maxima \& Minaima.
8. Find asymptotes.
9. Draw the graph.

EXT:-

$$
y=\frac{\ln x}{x}
$$

1. Domain: $(0, \infty), \stackrel{x>0}{\underline{~}}$
2. The curve does not intersect y-axis $(x=0)$

$$
y=0 \Rightarrow \ln x=0 \Rightarrow x=1
$$

So, the curve intersects x-axis $(y=0)$ at $(1,0)$
$3 \& 4 f(x)$ is only defined for $x>0$., so not even or old \& not symm. W.r.to x-axis. $(g(x,-y) \neq g(x, y))$
5. $y^{\prime}=\frac{1-\ln (x)}{x^{2}}=0 \Rightarrow \ln x=1$

$$
\Rightarrow x=e .
$$

$$
y^{\prime \prime}=\frac{2 \ln x-3}{x^{3}}
$$

$\left.\Rightarrow y^{\prime \prime}\right|_{x=e}=-\frac{1}{e^{3}}<0 \quad$ So, the curve has a maxima at $x=e$ and the value is $=1 / e$.
6.

$$
\begin{aligned}
y^{\prime \prime} & =\frac{2 \ln x-3}{x^{3}}=0 \\
& \Rightarrow \ln x=3 / 2 \Rightarrow x=e^{3 / 2}
\end{aligned}
$$

This implies:
$y^{\prime \prime}<0$ in $\left(0, e^{3 / 2}\right)$, so concave and $y^{\prime \prime}>0$ in $\left(e^{3 / 2}, \infty\right)$, so convex.
And, $x=e^{3 / 2}$ will give the point of inflection. i.e. $\left(e^{3 / 2}, \frac{3}{2} e^{-3 / 2}\right)$ is a pt. of inflection.
8. $\lim _{x \rightarrow \infty} \frac{\ln x}{x}=0$ and $\lim _{x \rightarrow 0+} \frac{\ln x}{x}=-\infty$

So, $y=0$ is a horizontal asymptote \& $x=0$ is a vertical asymptote.

HeW

$$
y=x-\frac{1}{x}=\frac{x^{2}-1}{x}
$$

ExaM:

$$
y=x^{5 / 3}-3 y^{2 / 3}=x^{2 / 3}(x-3)
$$

1. Domain $=\mathbb{R}$

$$
x \text {-axis }
$$

2. Intersects, at $x=0$ \& $x=3$
3. No symmetry. 4. Not even or odd.
4. $y^{\prime}=\frac{5 x-6}{3 x^{1 / 3}}$

Critical pt. $\therefore y^{\prime}=0 \Rightarrow x=6 / 5$,
Not derivable at $x=0$.

$$
y^{\prime \prime}=\frac{(10 x+6)}{9 x^{4 / 3}}
$$

$$
\left.y^{\prime \prime}\right|_{x=6 / 5}>0 \quad \text { So, al local minima at } x=6 / 5 \text {. }
$$

In $(-\delta, \delta): \quad f(x) \leqslant f(0): \quad x=0$ has a local maxima.
6.

$$
\begin{aligned}
& y^{\prime \prime}=0 \Rightarrow x=-3 / 5 \\
& \text { in }(-\infty,-3 / 5) \quad y^{\prime \prime}<0 \quad: \text { concave }
\end{aligned}
$$

In $\left(-\frac{3}{5}, 0\right), y^{\prime \prime}>0:$ convex
In $(0, \infty), y^{\prime \prime}>0 \quad \therefore$ Convex.
So, $x=-3 / 5$ gives pt. of inflection, Not $x=0$.

$$
\left(-\frac{3}{5},-\frac{18}{5}\left(\frac{3}{5}\right)^{4 / 3}\right)
$$

