A. Partial conversion
$\left.\begin{array}{l}x=r \cos \theta=f(\theta) \cos \theta \\ y=r \sin \theta=f(\theta) \sin \theta\end{array}\right\}$ and then find the nature of x, y.

ExC. $r=\frac{a}{\theta}, x=r \cos \theta=\frac{a \cos \theta}{\theta} \rightarrow \infty$ as $\theta \rightarrow 0+$

$$
y=r \sin \theta=\frac{a \sin \theta}{\theta} \rightarrow a \text { as } \theta \rightarrow 0+
$$

i.e. $\quad \lim _{x \rightarrow \infty} y=a \Rightarrow y=a$ is a_{n}
$r \sin \theta=a \mid$ asymptote

EXC $r=a \tan \theta$,

$$
\begin{aligned}
& \quad x=r \cos \theta=a \sin \theta \rightarrow \pm a \text { as } \theta \rightarrow \pm \frac{\pi}{2} \\
& y=r \sin \theta=a \frac{\sin ^{2} \theta}{\cos \theta} \rightarrow \infty \quad \text { as } \theta \rightarrow \pm \frac{\pi}{2} \\
& \text { i.e. } \quad \lim _{x \rightarrow a} y=\alpha \quad \lim _{x \rightarrow-a} y=\infty
\end{aligned}
$$

$$
r \cos \theta= \pm a
$$

$\Rightarrow \quad x=a$ is an asymptote $f x=-a$ is another ".

Exp.

$$
r=a(\sec \theta+\tan \theta) \quad \begin{aligned}
x & =a(1+\sin \theta) \rightarrow 2 a \text { as } \theta \rightarrow \frac{\pi}{2} \\
y & =a \frac{(1+\sin \theta) \sin \theta}{\cos \theta} \rightarrow \infty \text { as } \theta \rightarrow \frac{\pi}{2}
\end{aligned}
$$

i.e. $\lim _{x \rightarrow 2 a} y=\infty$

So, $x=2 a$ is a vertical asymp.
B. Full Conversion

$$
r=f(\theta) \rightarrow y=f(x)
$$

EXP.

$$
\begin{aligned}
p \sin \theta & =2 \cos (2 \theta) \\
\Rightarrow \quad y & =2\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \Rightarrow\left(x^{2}+y^{2}\right) y=2\left(x^{2}-y^{2}\right) \\
& \Rightarrow x^{2}(y-2)+y^{3}+2 y^{2}=0
\end{aligned}
$$

Asymptotes: $y=2$ horizontal.
No vertical Asymp.
No oblique asymptote as

$$
\begin{aligned}
& x=r \cos \theta=\frac{2 \cos (2 \theta) \cos \theta}{\sin \theta} \\
& y=r \sin \theta=2 \cos (2 \theta)
\end{aligned}
$$

both x, y do not go to infinity simultaneously -
C. Polar Formula:-

1. $\alpha=\lim _{r \rightarrow \infty} \theta$

2. $p=\lim _{\theta \rightarrow \alpha} \frac{r^{2}}{\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}}=r \sin (\alpha-\theta)$

EXT.

$$
\begin{aligned}
& r \sin (n \theta)=a \\
& \alpha=\lim _{r \rightarrow \infty} \theta=\lim _{r \rightarrow \infty} \frac{1}{n} \sin ^{-1}\left(\frac{a}{r}\right)=\frac{m \pi}{n}, m \in \mathbb{Z} . \\
& \frac{d r}{d \theta} \sin (n \theta)+r \cos (n \theta) n=0 \\
& \therefore \quad \frac{d r}{d \theta}=-\frac{r n \cos (n \theta)}{\sin (n \theta)} . \\
& \therefore \lim _{\theta \rightarrow \frac{m \pi}{n}} \frac{r^{2}}{\sqrt{r^{2}+\frac{r^{2} n^{2} \cos ^{2}(n \theta)}{\sin ^{2}(n \theta)}}=\lim _{n \theta+m \pi} \frac{a / \sin (n \theta)}{\sin ^{2}(n \theta)+n^{2} \cos ^{2}(n \theta)}} \underset{\sin (n \theta)}{a} \\
& =\frac{a}{n} .
\end{aligned}
$$

So, the asymptotes are:

$$
r \sin \left(\frac{m \pi}{n}-\theta\right)=\frac{a}{n}
$$

