Complex Analysis (MATH-2)

Books:-

1. Advanced Engineering Mathematics, E. Kreyszig
2.
3. Complex Variables \& Applications, Brown, Churchill.

Class Notes:
bankimmath. Weebly.com/lecnotes. html
CLASS TESTS:
Section II: $2^{\text {nd }}$ April.

$$
\text { Section III : } 5^{\text {th }} \text { April. }
$$

Complex Numbers:-
N : natural numbers.

$$
N \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}
$$

\downarrow
$x+2=1 \quad: \mathbb{Z}:$ integers.
\downarrow^{\prime}
$2 x-1=2: \mathbb{Q}:$ rational numbers.
\downarrow
Quadratic equss: $\quad x^{2}-2=0, \quad \mathbb{R}=\mathbb{Q} \cup \frac{(\mathbb{R}-\mathbb{Q})}{I}$ \downarrow. . Real numbers.

Limits $\mathbb{R} \cup\{-\infty\} \cup\{\infty\}:$ Extended \downarrow Real numbers.
$x^{2}+1=0$ has no real solutions.
We must 'invent' a number whose square is -1 ; denote it $i(=\sqrt{-1})$ and call it imaginary unit. (sometime \bar{J})

Afro, $(-i)^{2}=-1$, So, $x^{2}+1=0$ has two roots $\pm i$.
\Rightarrow Imaginary members have square a neg. value:

A complex number z is an ordered pair (x, y) of real x, y. ie.

$$
z=(x, y)
$$

- x is called the real part of $z, x=\operatorname{Re} z$
- y is called the imaginary port of $z, y=I_{m} z$.

$$
1=(1,0), \quad i=(0,1)
$$

Now, $\quad(x, y) \equiv x(1,0)+y(0,1)$.

$$
=x \cdot 1+y \cdot i=x+i y
$$

Addition \& Multiplication of two complex Numbers:

$$
z_{i}=\left(x_{i}, y_{i}\right)
$$

1) $z_{1}+z_{2}=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$
ii) $z_{1} z_{2}=\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)$

$$
\text { (} \quad \begin{aligned}
& \left(x_{1}, 0\right)+\left(x_{2}, 0\right)=\left(x_{1}+x_{2}, 0\right) \\
& \left(x_{1}, 0\right) \cdot\left(x_{2}, 0\right)=\left(x_{1}, x_{2}, 0\right)
\end{aligned}
$$

So, the set of complex numbers \mathbb{C} exterids the real numbers.

$$
\Rightarrow \quad i=(0,1) \cdot(0,1)=(-1,0)=-1
$$

Therefore in $c: \quad z^{2}+1=(z+i)(z-i)$
In general: $\quad z^{2}+\omega^{2}=(z+i \omega)(z-i \omega)$
Reciprocal Formula:-

$$
\begin{aligned}
\frac{1}{a+i b}=\frac{a-i b}{a^{2}+b^{2}} & =\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}} \\
& \equiv\left(\frac{a}{a^{2}+b^{2}},-\frac{b}{a^{2}+b^{2}}\right)
\end{aligned}
$$

Deft:-
If $z=x+i y$, then, $|z|=\sqrt{x^{2}+y^{2}}$ is called the absolute value of z and $\bar{z}=x-i y$ is called the complex conjugate of z.

Also, $z \cdot \bar{z}=\left(x^{2}+y^{2}\right)=|z|^{2}$.

Argand diagram or Complex plane
 z

k.

$Z_{1}+Z_{2}$ (Parallelogram law)

Reflection across x-axis.

$$
\Rightarrow \quad z=x+i y, \quad x, y \in \mathbb{R}
$$

$$
\begin{aligned}
|z|=\sqrt{x^{2}+y^{2}} & \geqslant x=\operatorname{Rez} \\
& \geqslant y=\operatorname{Im} z
\end{aligned}
$$

So,

$$
\begin{aligned}
& -|z| \leq \operatorname{Re} z \leq|z| \\
& -|z| \leq \operatorname{Im} z \leq|z| .
\end{aligned}
$$

Than Triangle Inequality:

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \text {, equality holds }
$$

when $0, z_{1} \& z_{2}$ are collinear.

Properties :-

$$
\begin{aligned}
& x=\operatorname{Re} z=\frac{z+\bar{z}}{2} \\
& y=\operatorname{Im} z=\frac{z-\bar{z}}{2 i}
\end{aligned}
$$

Now, Cartesian \rightarrow polar coordinates.

Let, $\begin{aligned} & r=|z|=+\sqrt{x^{2}+y^{2}}, \quad \begin{array}{l}x\end{array}=r \cos \theta \\ & y=r \sin \theta\end{aligned} \quad\left[\begin{array}{l}r \text { is ire } \\ r \text { is the d }\end{array}\right.$ from the origin
So, $z=\dot{x}+i y=r(\cos \theta+i \sin \theta)$

$$
=r e^{i \theta} \quad \text { (By Euler Identity) }
$$

$\Rightarrow \hat{\theta}$ is called the argument of z, denoltorby $\arg z$ $z=0$: $\quad \theta$ is undefined.

For $z \neq 0$, there ore infinitely many argument values.

However, one cen uniquely determine $\arg z$ for $z \neq 0$ if $-\pi<\theta \leqslant \pi$. The unique value is called the $(0 \leqslant \theta<2 \pi)$
principal argument, Arg z.
Exponential form or polar form of complex: -

$$
\begin{aligned}
z & =r e^{i \theta} \\
& =|z| e^{i \arg z}
\end{aligned}
$$

EXT:-

$$
\begin{aligned}
& z=1+i \quad \begin{array}{l}
x=|z| \cos \theta \\
|z|=\sqrt{2}, \quad y=|z| \sin \theta \\
\Rightarrow \cos \theta=\frac{1}{\sqrt{2}}, \quad \sin \theta=\frac{1}{\sqrt{2}} . \\
\therefore \theta=\pi / 4 \pm 2 n \pi . \quad(n=0,1 \ldots \\
\operatorname{Arg} z=\frac{\pi}{4},
\end{array} .
\end{aligned}
$$

HAW. $\quad z=-1-i, \quad|z|=\sqrt{2}$

$$
\operatorname{Arg} z=-\frac{3 \pi}{4}
$$

Result:- $x+i y=r e^{i \theta}$ lies on the circle of radius $r=|z|$.
If $r=1, e^{i \theta}$ lies on the circle of radius 1: $\forall \theta$.

$$
e^{i \pi}=-1, \quad e^{-i \pi / 2}=-i, \quad e^{-i 4 \pi}=1
$$

\# $\quad z=R e^{i \theta}, \quad 0 \leq \theta \leq 2 \pi$ is a parametric representafi of the circle, centered at $(0,0)$, radius R.

By shifting the origin,

$$
z=z_{0}+R e^{i \theta}, \quad 0 \leq \theta \leq 2 \pi
$$

represents a circle, centered at z_{0}, radius R.

HeW

$$
\text { Calculate } \quad \begin{aligned}
(\sqrt{3}+i)^{7}=\left(2 e^{i \pi / 6}\right)^{7} & =2^{7} e^{i 7 \pi / 6} \\
& =\left(2^{6} e^{i \pi}\right)\left(2 e^{i \pi / 6}\right) \\
& =-64(\sqrt{3}+i)
\end{aligned}
$$

\Rightarrow Easy to multiply, take powers, finding roots of complex numbers in poler forms.

Notation:

$$
\begin{aligned}
z=r e^{i \theta} & =r(\cos \theta+i \sin \theta) \\
& =r \operatorname{cis} \theta
\end{aligned}
$$

Let, $z_{1}=r_{1} e^{i \theta_{1}}, z_{2}=r_{2} e^{i \theta_{2}}, \vec{z}_{1}, z_{2} \neq 0$

$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

So, $\left|z_{1} z_{2}\right|=r_{1} r_{2}, \quad \arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$

$\triangle O A P \& \triangle O Q R$ are similar triangle.

$$
\frac{O A}{O Q}=\frac{O P}{O R}=\frac{A P}{Q R} .
$$

Thicutbur
Spherical Representation

Consider a $f_{n} \quad f: S \rightarrow \mathbb{C} U\{\infty\}$ by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{array}{cl}
\frac{x_{1}+i x_{2}}{1-x_{3}}, & x_{3} \neq 1 \\
\infty & x_{3}=1
\end{array}\right.
$$

$$
S=\left\{\left(x_{1}, x_{2}, x_{3}\right): \because^{\prime}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)=1\right\}
$$

This correspondence is called the Stereographic projection. The sphere is Riemann sphere.

