Calculus

Circle:

$$
\begin{aligned}
& z=z_{0}+R e^{i \theta} \\
& \Rightarrow\left|z-z_{0}\right|=R\left|e^{i \theta}\right|=R \\
& \text { i.e. }\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=R^{2}
\end{aligned}
$$

Neighbourhood of a point:-
A δ-neighbourhood of a point $z_{0} \in \mathbb{C}$ is the set of all points whose distance from z_{0} is less than δ.

$$
\text { i.e. }\left|z-z_{0}\right|<\delta
$$

$$
\text { i.e. } \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} \cdot<\delta
$$

Or, one can consider a square nod.

$$
\begin{aligned}
& \text { iss. }\left|x-x_{0}\right|<\delta, \quad\left|y-y_{0}\right|<\delta . \\
& N_{\delta}\left(z_{0}\right)=\left\{z \in \mathbb{C}| | z-z_{0} \mid<\delta\right\}
\end{aligned}
$$

Bounded Set: - Let, $D \subseteq \mathbb{C} . D$ is said to be bounded if $\exists M>0$ such that

$$
|z|<M \quad \forall z \in D
$$

Limit point:- Let, $z_{0} \in D \subseteq \mathbb{C} . \quad z_{0}$ is said to be a. limit point of D if every neighbourhood of $z_{0}, N_{\delta}\left(z_{0}\right)$, contains at least one point of D, other than Z_{0}.

Function of complex Variable:-

Let, $f: D \rightarrow \mathbb{C}$ is a function, $D \subseteq \mathbb{C}$.

$$
w=f(z)
$$

EXT: $1, f(z)=\frac{1}{z}, \quad z \neq 0$
2. $f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$: polynomial f_{n}
3. $f(z)=|z|^{2}$
\# z and $f(z)$ are two complex numbers.

Let, $z=x+i y \equiv(x, y)$

$$
\& f(z)=w u+i v .
$$

Then, $\quad u+i v=f(x+i y)$.
We can think of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

ExT: $\quad f(z)=|z|^{2}, \quad g(z)=z^{2}$

$$
\begin{array}{rlrl}
f(x+i y) & =x^{2}+y^{2}, & g(z) & =x^{2}-y^{2}+2 i x y \\
& =u(x, y)+i v(x, y): & =u(x, y)+i v(x, y) \\
\Rightarrow v=0, u=x^{2}+y^{2}, & u(x, y)=x^{2}-y^{2} \\
v(x, y)=2 x y
\end{array}
$$

If $v(x, y)=0$, we can think' f as real-valued function. $\quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
H.W $f(z)=2 z+\bar{z} \therefore$ Find $u \& v$ at $\vec{z}_{0}=1+i$
$\Rightarrow \quad u=\operatorname{Re} f(z), \quad v=\operatorname{Re} f(z)$.

Limit:-
Let, $f: D \rightarrow \mathbb{C}$ be a function and z_{0} is a linin point of D. Then, f is said to have a limit $L \in \mathbb{C}$ as $z \rightarrow z_{0}$ if for any $\epsilon>0, \exists \delta_{>0}$
such that

$$
\begin{aligned}
|f(z)-L|<\epsilon & \text { whenever } \quad 0<\left|z-z_{0}\right|<\delta, \\
& z \in D .
\end{aligned}
$$ $z \in D$.

y

\# X场 We denote it as

$$
\lim _{z \rightarrow z_{0}} f(z)=L
$$

\# If $\lim _{z \rightarrow z_{0}} f(z)$ exists, it is unique:
Ant: Suppose not, $L_{1}=\lim _{z \rightarrow z_{0}} f(z)$ and $L_{2}=\lim _{z \rightarrow z_{0}} f(z)$.

$$
\text { Prove. } \quad\left|L_{1}-L_{2}\right|<\epsilon \quad \forall \epsilon>0
$$

ExT:

$$
\begin{aligned}
& \lim _{z \rightarrow 1} i \frac{\bar{z}}{2}=\frac{i}{2} \quad \| \lim _{(x, y) \rightarrow(1,0)} \frac{y+i x}{2}=\frac{i}{2}, \\
D_{1}= & \{|z|<1\} \\
D_{2}= & \left\{|z|<\frac{1}{2}\right\} \cdot x \\
& \left|f(z)-\frac{i}{2}\right|=\left|\frac{i \bar{z}}{2}-\frac{i}{2}\right|=\frac{|\bar{z}-1|}{2}=\frac{\sqrt{(x-1)^{2}+y^{2}}}{2}<\epsilon
\end{aligned}
$$

whenever, $\quad \sqrt{(x-1)^{2}+y^{2}}=|z-1|<\delta(=2 \epsilon)$.
So, $\quad \lim _{z \rightarrow 1} i \frac{\bar{z}}{2}=\frac{i}{2}$.

EAM

$$
\begin{aligned}
f(z) & =\frac{z}{\bar{z}}, \quad z \neq 0 . \quad \text { Does } \lim _{z \rightarrow 0} f(z) \text { exist? } \\
\frac{z}{\bar{z}} & =\frac{x+i y}{x-i y}=\frac{x^{2}-y^{2}+2 i x y}{x^{2}+y^{2}} \\
\lim _{z \rightarrow 0} f(z) & =\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \pm y^{2}+2 i x y}{x^{2}+y^{2}}
\end{aligned}
$$

Choose $z=(x, 0)$ that approckes to $(0,0)$.

$$
\lim _{(x, 0) \rightarrow(0,0)} \frac{z}{z}=1
$$

Choose $z=(0, y)$-that approches to (0,0) ;

$$
\lim _{(a, y) \rightarrow(0,0)} \frac{z}{\bar{z}}=-1 .
$$

Since the limit is unique, we must conclude that the limit does not. exist.

Result:-

$$
z=x+i y, \quad f(z)=u(x, y)+i v(x, y)
$$

Let, $L=L_{1}+i L_{2}, \quad z_{0}=\left(x_{0}, y_{0}\right)$.

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}} f(z)= & L \quad \text { if } \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=L_{1} \text { and } \\
& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=L_{2}
\end{aligned}
$$

Continuity:-
Let, $f: D \rightarrow \mathbb{C}$ and $z_{0} \in D . \quad f$ is said to be contimous at z_{0} if

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

limit at infinity: $\quad f(z)$ has limit L as $z \rightarrow \infty$ if for every $\in>0, \exists M>0$ such that

$$
|f(z)-L|<\epsilon \quad \text { whenever }|z|>M \text {. }
$$

Limit to infinity: $\quad f(z)$ going to infinity as $z \rightarrow z_{0}$ if for every $M>0, j \delta>0$ such that,

$$
|f(z)|>M \quad \text { whenever } 0<\left|z-z_{0}\right|<\delta
$$

Result:- $\lim _{z \rightarrow z_{0}} f(z)=\infty$ iff $\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0$

$$
\lim _{z \rightarrow \infty} f(z)=L \quad \text { iff } \quad \lim _{z \rightarrow 0} f\left(\frac{1}{z}\right)=1
$$

\# f is said to continuous on D if f is, continua at each $z \in D$.

EXM: XX f : $f(z)=x+i y^{2}$ is continuous at $z=2 i$.

$$
f(2 i)=4 i
$$

No, $\quad|f(z)-f(2 i)|=\left|x+i y^{2}-4 i\right|$

$$
\begin{aligned}
& \leq|x|+|y+2||y-2| \\
& \leq|x|+(4+\delta)(|y-2|)<\delta+(4+\delta) \delta<\epsilon
\end{aligned}
$$

with $|x|<\delta, \quad|y-2|<\delta$, whenever, $\quad \delta^{2}+5 \delta<\epsilon$.
i.e. Whenever $\delta<\sqrt{\epsilon+\frac{25}{4}}-\frac{5}{2}$.

With this δ, the result is true. So, f is cont. at $z=2 i$.

ExaM $\lim _{z \rightarrow \infty} \frac{z}{3-z}$

$$
=\lim _{z \rightarrow 0} \frac{1 / z}{3-1 / z}=\lim _{z \rightarrow 0} \frac{1}{3 z-1}=-1
$$

H.W. $\quad \lim _{z \rightarrow 0} \frac{z}{|z|} \quad$ Choose path along $x=0 \& y=0$.

Result: Let, $f(z)=u(x, y)+i v(x, y)$. f is cont at $z_{0}=\left(x_{0}, y_{0}\right)$ iff $u \& v$ are cont. at $\left(x_{0}, y_{0}\right)$.

ExM: $e^{z}=e^{x+i y}=e^{x} \cos y+i e^{x} \sin y=u+i v$.
u, u are cont. at (x, y), so e^{z} is continuous.

HaW.

$$
f(z)=\left\{\begin{array}{cc}
\frac{\operatorname{Im}\left(z^{2}\right)}{|z|^{2}}, & z \neq 0 \\
0, & z=0
\end{array}=\left\{\begin{array}{cl}
\frac{2 x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0)
\end{array}\right.\right.
$$

Path along $y=m x . \quad f(z)=\frac{2 m}{1+m^{2}}$, diff. for diff
Thus, Limit does not exist.

HaW

$$
\lim _{z \rightarrow 0}\left(\frac{z}{\bar{z}}\right)^{2} \quad \begin{aligned}
& \text { Path } \\
& y=x
\end{aligned}
$$

Derivative:-
Let, $f: D \rightarrow \mathbb{C}, D \subseteq \mathbb{C}$ The derivative of f at $z_{0} \in D$ is denoted by $f^{\prime}\left(z_{0}\right)$ and is defined by the limit
$\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$, provided it exists. Then, f is said to be differentiable at z_{0}.

Or. $f^{\prime}\left(z_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h .}$

Result:- If f is differentiable at z_{0}, f is continuous at z_{0}.

Hint:

$$
\begin{aligned}
f(z)-f\left(z_{0}\right) & =\frac{f(z)-f\left(z_{0}\right)}{\left(z-z_{0}\right)} \cdot\left(z-z_{0}\right) \\
\therefore \quad \lim _{z \rightarrow z_{0}} f(z) & =\lim _{z \rightarrow z_{0}}\left\{\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\left(z-z_{0}\right)+f\left(z_{0}\right)\right\} \\
& =f^{\prime}\left(z_{0}\right) \cdot \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)+f\left(z_{0}\right) \\
& =f\left(z_{0}\right)
\end{aligned}
$$

Counter Example

$$
\begin{aligned}
f(z)=\bar{z} & =x-i y . \quad, z_{0}=(0,0) . \\
& =u(x, y)+i v(x, y)
\end{aligned}
$$

u, v are cont. $\Rightarrow f$ is cont.

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\lim _{(x, y) \rightarrow(0,0)} \frac{x-i y}{x+i y}=\lim _{z \rightarrow 0} \frac{\bar{z}}{z} \text { does not exist }
$$

EXC

$$
\begin{aligned}
f(z)=|z|^{2} & =x^{2}+y^{2} \\
& =n(x, y)+i v(x, y)
\end{aligned}
$$

$\left.\begin{array}{l}u(x, y)=x^{2}+y^{2} \\ v(x, y)=0\end{array}\right\}$ cont. at $(0,0)$ or any (x, y).
So, $f(z)$ is cont. at $(0,0)$ and at any z.

$$
\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z-0}=\lim _{z \rightarrow 0} \frac{|z|^{2}}{z}=\lim _{z \rightarrow 0} \frac{z \bar{z}}{z}=0
$$

So, diff. at $z_{0}=0$ and $f^{\prime}(0)=0$.
Let, $z_{0} \neq 0$:

So, $\quad f(z)=|z|^{2}$ is not diff. at $z \neq 0$.

Analytic function:-
A $f n f(z)$ is said to be analytic
in D if f is defined and differentiable at all points of D.
$\Rightarrow \quad f$ is said to be analytic at a point $z_{0} \in D$ if f is analytic in a neighbourhood of z_{0}. ie. $\exists \delta>0$ s.t f is analytic in $N_{\delta}\left(z_{0}\right)$.

