Sequence:-

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \mathbb{C} . \\
& f(n)=a_{n}+i b_{n}=z_{n}, \quad a_{n}, b_{n} \in \mathbb{R} .
\end{aligned}
$$

Ex:

$$
\begin{aligned}
& \quad\{f(n)\}_{n}=\left\{\frac{1}{n}+\frac{i}{n^{2}}\right\}_{n} \\
& 1+i, \frac{1}{2}+\frac{i}{4}, \frac{1}{3}+\frac{i}{3^{2}}, \ldots
\end{aligned}
$$

Exam: Real Sequence:

$$
\left\{\frac{1}{n}\right\}_{n} \quad\left\{a_{n}\right\}_{n} \quad f: \mathbb{N} \rightarrow \mathbb{R}
$$

Convergence:

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots \rightarrow 0, \text { as } n \rightarrow \infty
$$

A seqn. $\{f(n)\}_{n}$ is said to be convergent, if for any and fix $\in>0, \exists N_{0} \in \mathbb{N}$ s.t.

$$
|f(n)-l|<\epsilon \quad \text { when } \quad n \geqslant N_{0}
$$

i.e. $\left.\frac{\mid a_{n}+i b_{n}}{z_{m}}-\left(l_{1}+i l_{2}\right) \right\rvert\,<\epsilon$ when, $n \geq N_{0}$
\# © $l$ is called the limit of the sequence

$$
\{f(n)\}_{n}
$$

\# $\left\{z_{n}\right\}_{n}$ is converging to $l_{1}+i l_{2}$ iff $\left\{a_{n}\right\}_{n}>l_{1}$ \& $\left\{b_{n}\right\}_{n} \rightarrow l_{2}$, where $z_{n}=a_{n}+i b_{n}$.

ExC

$$
\begin{aligned}
z_{n} & =\frac{1}{n^{3}}+i \quad \text { converges to } i . \\
& =a_{n}+i b_{n} \\
\lim _{n \rightarrow \infty} \frac{1}{n^{3}} & =0, \quad \lim _{n \rightarrow \infty} b_{n}=1 .
\end{aligned}
$$

So, $\lim _{n \rightarrow \infty} z_{n}=i$

Not True in polar coordinates.

$$
\begin{aligned}
& z_{n}=-2+i \frac{(-1)^{n}}{n^{2}},=P_{n} e^{\theta_{n}}, \quad \theta_{n} \theta=A_{r g}\left(z_{n}\right) \\
& \lim _{n \rightarrow \infty} z_{n}=-2 \\
& P_{n}=\left|z_{n}\right|=\sqrt{4+\frac{1}{n^{4}}} \rightarrow 2 \text { as } n \rightarrow \infty \\
& \theta_{n}=\tan ^{-1}\left(\frac{(-1)^{n} / n^{2}}{-2}\right) \rightarrow\left\{\begin{array}{cc}
\pi, & n=\text { even } \\
-\pi, & n=\text { odd. } .
\end{array}\right.
\end{aligned}
$$

Series: $\left\{z_{n}\right\}_{n}$ be a sequence.

$$
z_{1}+z_{2}+z_{3}+\cdots=\sum_{n=1}^{\infty} z_{n}
$$

Let, $S_{N}=\sum_{n=1}^{N} z_{n}=z_{1}+\cdots+z_{N}, N=1,2, \ldots$
So, $\left\{S_{n}\right\}_{n}$ be a sean. corresponding to $\sum z_{n}$. It is called the seq n of partial sums.
$\Rightarrow \sum z_{n}$ is convergent if $\left\{s_{n}\right\}_{n}$ is convergent and the limit $S$ is called the sum of the series.

$$
S=\sum_{n=1}^{\infty} z_{n}
$$

A necessary condition for the series $\sum_{n=1}^{\infty} z_{n}$ to be convergent is $z_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Absolute convergence:-
$\sum z_{n}$ is absolutely cons if $\sum\left|z_{n}\right|$ is convergent.

$$
\sum\left|z_{n}\right|=\left|z_{1}\right|+\left|z_{2}\right|+\cdots
$$



Consider, $\sum_{n=1}^{\infty} z_{n}$ and a known series

converges, so does $\Sigma z_{n}$
11) if $\sum U_{n}$ diverges, so does $\sum z_{n}$.

Comparison Test:-
Consider two real series $\sum a_{n} \& \sum$ with $0 \leq a_{n} \leq b_{n} \quad \forall n \geqslant N_{0}$.

1) if $\sum b_{n}$ converges, so does $\sum a_{n}$
ii) if $\sum a_{n}$ diverges, so does $\sum b_{n}$.
\# Absolute convergence $\Rightarrow$ Convergence.

$$
\begin{aligned}
& \sum\left|z_{n}\right|=\sum \sqrt{a_{n}^{2}+b_{n}^{2}} \quad \text { convergent. } \\
& 0 \leq\left|a_{n}\right| \leq \sqrt{a_{n}^{2}+b_{n}^{2}} \quad \& 0 \leq\left|b_{n}\right| \leq \sqrt{a_{n}^{2}+b_{n}^{2}}
\end{aligned}
$$

By Comparison test, $\sum\left|a_{n}\right| \& \sum\left|b_{n}\right|$ converge.
So, $\sum a_{n}, \sum b_{n}$ converge. $\Rightarrow \sum z_{n}$ converges.
\# $\sum \frac{1}{n^{p}}$ converges if $p>1$.
\# $\sum z^{n}=1+z+z^{2}+\cdots=\frac{1}{1-z}$ for $|z|<1$.

$$
S_{N}(z)=\sum_{n=1}^{N} z^{n}=\frac{1-z^{N+1}}{1-z} \rightarrow \frac{1}{1-z} \quad \text { as } N \rightarrow \infty
$$

Geometric series.

Power Series:-

$$
\begin{gathered}
\left\{f_{n} f_{n}\right. \\
\sum_{n=1}^{\infty} f_{n}=f_{1}+f_{2}+\cdots \\
\sum_{n=1}^{\infty} f_{n}(z)=f_{1}(z)+f_{2}(z)+\cdots
\end{gathered}
$$

Constant series
series of $f$...
\# Let, $z_{0} \in \mathbb{C}$.

$$
\left.\begin{array}{l}
\sum_{n=1}^{\infty} f_{n}\left(z_{0}\right) \equiv \sum_{n=1}^{\infty} g_{n}^{0} \\
\sum_{n=1}^{\infty} f_{n}\left(z_{i}\right)=\sum_{n=1}^{\infty} g_{n}^{i}
\end{array}\right\} \begin{aligned}
& \text { may or may not } \\
& \text { converge. }
\end{aligned}
$$

Let, for $z \in D, \sum f_{n}(z)$ converges to $f(z)$., i.e.

$$
f(z)=\sum_{n=1}^{\infty} f_{n}(z) . \quad z \in D
$$

Uniform convergence:-
For every $\epsilon>0, \exists N_{0} \in \mathbb{N}$, independent of $z$, st.

$$
\left|S_{n}(z)-f(z)\right|<\epsilon \quad \forall n \geqslant N_{0} \quad \forall z \in D
$$

where,

$$
S_{n}(z)=\sum_{k=1}^{n} f_{n}(z) .
$$

EXM. $\quad f_{n}(z)=\frac{1}{n z}, \quad z \neq 0$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} f_{n}(z)=0 \\
& \quad\left|\frac{1}{n z}\right|<\epsilon \quad \text { if } n>\frac{1}{\epsilon|z|}=N_{0}
\end{aligned}
$$

Converges pointwise. not uniformly.
Let, $\epsilon_{0}<|z|<1$. Hen,

$$
\left|\frac{1}{n z}\right|\left\langle\epsilon \text { if } n>\frac{1}{|z| \epsilon}>\frac{1}{\epsilon \epsilon_{0}} \text { indep of } z\right.
$$

$\left\{f_{n}(z)\right\}$ converges cenifarmbly in $\epsilon_{0}<|z|<1$.

Defrn:- An infinite series of the form $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is called a power series about $z=z_{0}, \quad a_{n} \in \mathbb{C}$.

$$
\Rightarrow \quad f_{n}(z)=a_{n}\left(z-z_{0}\right)^{n}
$$

$\Rightarrow$ If $z_{0}=0$ : $\sum_{n=0}^{\infty} a_{n} z^{n}$ is a power series in powers of $z$.

$$
\# \quad \sum_{n=0}^{\infty} a_{n} z^{n}=a_{0}+a_{1} z+a_{2} z^{2}+\cdots
$$

The power series converges for $z=0$. \&

$$
a_{0}=\left.\sum_{n=0}^{\infty} a_{n} z^{n}\right|_{z=0}
$$

What about $z \neq 0$ ?
ExM $\sum_{n=0}^{\infty} z^{n}=1+z+\cdots \quad$ Geometric series converges for $|z|<1$.

Convergence of Power Series:-
Consider a power series: $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, a_{n} \in \mathbb{C}$.
Then, one of the following is true:

1) the PS converges only at $z=z_{0}$.
2) the PS converges for $\left|z-z_{0}\right|<R$ and diverges for $\left|z-z_{0}\right|>R$. The series may ar may not converge at points on $\left|z-z_{0}\right|=R$.
iii) the PS converges in $\mathbb{C}$.
$\Rightarrow$ In case of (II), the real number $R$ is called the radius of converges.

Calculation of $R:-$

A. Ratio test:-

Let, $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$
a) if $L=0, R=\infty \Rightarrow$ P.S. converges in $\mathbb{C}$.
b) if $L=\infty, R=0 \Rightarrow$ P.s. "only at $z=z_{0}$
c) $\quad R=\frac{1}{L}$.
B. Root test:-

Let, $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=L \cdot\left(\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}\right)$
then, $\quad R=\frac{1}{L}$.

EAM:-

$$
\sum_{n=0}^{\infty}\left(\frac{n+2}{3 n+1}\right)^{n}(z-4)^{n}
$$

Root test: $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\lim _{n \rightarrow \infty} \frac{n+2}{3 n+1}=\frac{1}{3}$.

$$
\therefore \quad R=3
$$

Ex. $\sum \frac{1}{n!} z^{n}$.
Ratio test: $\quad \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{1}{(n+1)}=0$.
$\therefore \quad R=\infty:$ P.S. Converges for all $z \in \mathbb{C}$.
EXT.

$$
\sum_{n=0}^{\infty} \frac{1}{(3+i)^{n}} z^{3 n}
$$

Let, $z^{3}=\omega . \sum_{n=0}^{\infty} \frac{1}{(3+i)^{n}} \omega^{n}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{1}{3+i}\right|=\frac{1}{\sqrt{10}} \\
& \therefore R=\sqrt{10} .
\end{aligned}
$$

So, the series $\sum a_{n} \omega^{n}$ converges for $|\omega|<\sqrt{10}$.
\& diverges for $|\omega|>\sqrt{10}$.
i.e. Converges for $|z|<10^{1 / 6}$, \& div. fur $|z|>10^{1 / 6}$.

HAW.

$$
\begin{aligned}
& \sum \frac{z^{3 n}}{4^{n} n^{\alpha}}, \quad \alpha>0 \\
& \lim _{n \rightarrow \infty}\left|\frac{z^{3(n+1)} 4^{n} n^{\alpha}}{4^{n+1}(n+1)^{\alpha} z^{3 n}}\right| \\
& =\frac{\left|z^{3}\right|}{4}<1 \quad \text { ie. }|z|<4^{1 / 3}
\end{aligned}
$$

If $\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=L<1$, then $\sum u_{n}$ converses, else diverges.
$\Rightarrow$ Let, $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad|z|<R, \quad \underline{R>0}$
ie. $f(z)$ is represented as a power series, centered at $z=0$.

Termaise derivative

$$
\sum_{n=1}^{\infty} n a_{n} z^{n-1}=f^{\prime}(z) \quad,|z|<R
$$

The derived series of a P.S. has the same radius of convergence as the original P.S.

Termuise Integration
The P.S $\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} z^{n+1}$ of has the same radius of conversance an the original P.S.

EXT:

$$
\begin{aligned}
\sum \frac{(n!)^{2} z^{n}}{(2 n)!} & \equiv \sum u_{n} \\
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{[(n+1)!]^{2} z^{n+1}(2 n)!}{(2 n+2)!(n!)^{2} z^{n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{2}|z|}{2(n+1)(2 n+1)}=\frac{|z|}{4}
\end{aligned}
$$

The p.S. converges if $\frac{|z|}{4}<1$ i.e. $|z|<4=R$.

$$
\begin{aligned}
& \sum \frac{n(n!)^{2} z^{n-1}}{(2 n)!}=\sum v_{n} \\
& \lim _{n \rightarrow \infty}\left|\frac{v_{n+1}}{v_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)}{n} \frac{(n+1)}{2(2 n+1)}|z|=\frac{|z|}{4} .
\end{aligned}
$$

So, $R=4$.
Ans, $\sum \frac{(n!)^{2}}{(2 n)!(n+1)} z^{n+1}$, has Radius of conv. $=4$.
\# $\sum a_{n}\left(z-z_{0}\right)^{n}=f(z)$ represents an analytic fo for $\quad\left|z-z_{0}\right|<R \quad$ if $R>0$.
\# The derivatives of the sum fr. is obtained by differentiating the P.S. term by term. and $f$ is infinitely differentiable.

$$
f^{(k)}(z)=\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n}\left(z-z_{0}\right)^{n-k} .
$$

for $\left|z-z_{0}\right|<R$.
$\Rightarrow$ Sum of a P.S is analytic and has derivatives of all orders, which are also analytic fr..

In fact, converse is abs true!

Taylor'\$ Theorem:-
Let, $f(z)$ be analytic in $D$, and $z_{0} \in D$. Then $f(z)$ has the power series representation

$$
\begin{aligned}
& f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { where } \\
& a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}, n=0,1,2 \ldots
\end{aligned}
$$

This representation is valid in the largest open disk with center $z_{0}$ in which $f(z)$ is analytic

$f(z)=e^{z}$. is an entire fr.

$$
f^{(n)}(0)=1 . \quad \forall n .
$$

So,

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \quad|z|<\infty
$$

$z_{\sigma}=0$ : Maclaurin Series.

EM.

$$
\begin{aligned}
\sin z & =\frac{e^{i z}-e^{-i z}}{2 i} \\
& =\frac{1}{2 i}\left[\sum_{n=0}^{\infty} \frac{(i z)^{n}}{n!}-\sum_{n=0}^{\infty} \frac{(-i z)^{n}}{n!}\right] \\
& =\frac{1}{2 i} \sum_{n=0}^{\infty}\left\{1-(-1)^{n}\right\} \frac{i^{n} z^{n}}{n!} \\
& =\frac{1}{2 i} \sum_{n=0}^{\infty} \frac{2 i^{2 n+1} z^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!},|z|<\infty
\end{aligned}
$$

Term by term diff:

EXC

$$
\cos z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}, \quad|z|<\infty
$$

$$
\begin{aligned}
\sinh (z)=-i \sin (i z) & =-i \sum_{n=0}^{\infty}(-1)^{n} \frac{(i z)^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!},|z|<\infty
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow e^{i y}=\sum_{n=0}^{\infty} \frac{(i y)^{n}}{n!} & =\sum_{n=0}^{\infty}(-1)^{n} \frac{y^{2 n}}{(2 n)!}+i \sum_{n=0}^{\infty}(-1)^{n} \frac{y^{2 n+1}}{(2 n+1)!} \\
& =\cos (y)+i \sin (y) \quad\left[\begin{array}{c}
\text { Euler ' } \$ \\
\text { Formula }]
\end{array}\right.
\end{aligned}
$$

EXM.

$$
\begin{aligned}
& \operatorname{Ln}(1+z)\left.=\sum_{n=0}^{\infty} a_{n}\right\} z^{n} \\
& \text { with } \quad a_{n}=\frac{f^{(n)}(0)}{n!} \\
& a_{0}=0, \quad a_{1}=\left.\frac{1}{1+z}\right|_{z=0}=1, \quad a_{2}=\left.\frac{-1}{2!(1+z)^{2}}\right|_{z=0} \\
& a_{z e} a_{n}=\frac{(-1)^{n-1}}{n} \\
& \therefore L_{n}(1+z)=\sum_{n=1}^{\infty} \frac{1-1)^{n-1} z^{n}}{n}
\end{aligned}
$$

with

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=1
$$

So, $\operatorname{Ln}(1+z)=z-\frac{z^{2}}{2}+\frac{z^{3}}{3} \cdots, \quad,|z|<1$
EXM. $\quad \frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}, \quad|z|<1$
EXM.

$$
\begin{aligned}
f(z) & =\frac{1}{(z+1)(z+2)} \\
& =\frac{1}{z+1}-\frac{1}{z+2} \\
& =(1+z)^{-1}-\frac{1}{2}(1+z / 2)^{-1} \\
& =\sum_{n=0}^{\infty}(-1)^{n} z^{n}-\frac{1}{2} \sum_{n=0}^{\infty}(z / 2)^{n}(-1)^{n} \text { for }|z|<1 \\
& =\sum_{n=0}^{\infty}\left((-1)^{n}-\frac{(-1)^{n}}{2^{n+1}}\right) z^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left(1-\frac{1}{2^{n+1}}\right) z^{n} \quad,|z|<1
\end{aligned}
$$

ExM

$$
\begin{aligned}
& \frac{\sin z}{\cos z}=\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}\right) \cdot\left\{1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\cdots\right\}^{-1} \\
&=\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots\right)\left(1+\frac{z^{2}}{2}+\frac{5 z^{4}}{24} \pm \cdots\right) \\
&=z+\left(\frac{1}{2}-\frac{1}{3!}\right) z^{3}+\cdots \\
& \cos z=0 \Rightarrow \quad \Rightarrow=\frac{n \pi}{2} \cdot n= \pm 1, \pm 2 \ldots \\
& R=\pi / 2 .
\end{aligned}
$$

Laurent Series:-
$\rightarrow$ What if $f(z)$ is not analytic at $z_{0}$ ?
If $f$ is analytic at $z_{0}$, then.

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad \text { for rome } n b d \text { of } z_{0} \text {. }
$$

We generalize Taylor' $\$$ series, and call it Laurent series.

Consider the series:

$$
\begin{gather*}
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} b_{n} \frac{1}{\left(z-z_{0}\right)^{n}}  \tag{1}\\
\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
\end{gather*}
$$

The region of convergence of $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ may be $\mathbb{C}$ or $\left|z-z_{0}\right|<R$. Inside the region of convergence, the P.S. converges to an analytic $f r f_{1}(z)$, i.e.

$$
f_{1}(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad\left|z-z_{0}\right|<R
$$

Let, $\omega=\frac{1}{z-z_{0}}$. then, $\sum_{n=1}^{\infty} b_{n} \frac{1}{\left(z-z_{2}\right)^{n}}=\sum_{n=1}^{\infty} b_{n} \omega^{n}$.
Let, the ind P.S. converges to some analytic fro, ie.

$$
\phi(\omega)=\sum_{n=1}^{\infty} b_{n} \omega^{n} \quad \text { for }|\omega|<01 / r
$$

ie. $f_{2}(z)=\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}$ for $\left|z-z_{0}\right|>r$

If $r<R$, then, $f_{1}(z) \& f_{2}(z)$ are both analytic in the annulus $r<\left|z-z_{0}\right|<R$. Hence,

$$
\begin{aligned}
f(z)=f_{1}(z)+f_{2}(z) & =\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}} \\
& =\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
\end{aligned}
$$

Where, $\quad c_{n}= \begin{cases}a_{n}, & n \geqslant 0 \\ b_{-n}, & n<0 .\end{cases}$
This expression is called a Laurent series about $z_{0}$.
$\Rightarrow$ If $r>R$, the Laurent series diverges everywhere.
$\Rightarrow$ If $P=R$, the $L S$, diverges everywhere, except possibly at pts. on $|z-z|=R$.

ExM. $\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \frac{z^{n}}{n^{2}}$ conv. for $|z|=1$.

$$
\sum_{n=-\infty}^{\infty} z^{n} \quad \text { dis } \quad \text { for }|z|=1
$$

$\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \frac{z^{n}}{n}$ cons. everywhere on $|z|=1$, except at

Theorem:-
Suppose $f(z)$ is andytic in the annulus $r<\left|z-z_{0}\right|<R$. Then the representation $f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ is valid throughout the annulus. The corf, are given by:

$$
c_{n}=\frac{1}{2 \pi i} \int_{c} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z, n=0, \pm 1, \pm 2, \ldots
$$

where $C$ is any swivels oriented closed contour in the annulus about $z_{0}$.


Remark: 1) $a_{n} \neq \frac{f^{(n)}\left(z_{0}\right)}{n!}$ as Taylor' $p$, since $f$ is not analytic in $\left|z-z_{0}\right| \leq R$.
11) $\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}$ is called the Principle part of the Laurent series. \& $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is called the analytic part.

Exp. $\frac{x}{(f+y)} \quad f(z)=\frac{1}{(1-z)}$ about $z=0$.
$f(z)$ is not analytic at $z=1$. We consider two regions:

1) $|z|<1$
( 1 ) $|z|>1$.
$f$ is analytic in $|z|<1$ :

$$
f(z)=\sum_{n=0}^{\infty} z^{n} \quad, \quad|z|<1
$$

For $|z|>1$ :

$$
\begin{aligned}
\frac{1}{1-z} & =-\frac{1}{z}\left(1-\frac{1}{z}\right)^{-1} \quad\left|\frac{1}{z}\right|<1 \\
& =-\frac{1}{z}\left(1+\frac{1}{z}+\frac{1}{z^{2}}+\cdots\right) \\
& =-\left(\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\cdots\right) \text { for }|z|>1
\end{aligned}
$$

This is a Laurent Series. $(r=1, R=\infty)$
ExM. $f(z)=\frac{\sin z}{z^{2}} . \quad|z|>0$.

$$
\begin{aligned}
& =\frac{1}{z^{2}}\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}\right) \\
& =\frac{1}{z^{2}}\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\cdots\right) \\
& =\frac{1}{z}-\frac{z}{3!}+\frac{z^{3}}{5!} \cdots, \quad|z|>0
\end{aligned}
$$

EXC

$$
\begin{aligned}
f(z)=\frac{1}{z^{2}+1} & =2 i\left[\frac{1}{z-i}-\frac{1}{z+i}\right] \\
& =2 i\left[-\frac{1}{i}(1-z / i)^{-1}-\frac{1}{i}(1+z / i)^{-1}\right] \rightarrow \\
& =-2 \sum_{n=0}^{\infty}\left(\frac{z}{i}\right)^{n}-2 \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{z}{i}\right)^{n} \\
& =-2 \sum_{n=0}^{\infty} \frac{\left[1-(-1)^{n}\right]}{i^{n}} z^{n} \text { for }|z|<1
\end{aligned}
$$

Laurent Series about $z=i$ :

$$
\begin{aligned}
& f(z)=\frac{1}{z-i} \frac{1}{z+i}=\frac{1}{z-i} \frac{1}{2 i}\left(1+\frac{z-i}{2 i}\right)^{-1} \\
&=\frac{1}{2 i} \frac{1}{z-i} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 i)^{n}}(z-i)^{n} \\
&=-\sum_{n=-1}^{\infty}\left(\frac{i}{2}\right)^{n+2}(z-i)^{n} \quad \text { for } \\
& 0<|z-i|<2 .
\end{aligned}
$$

Laurent series of $\frac{1}{z-2}$ in $|z-1|>1$

$$
\begin{aligned}
\frac{1}{z-2} & =\frac{1}{(z-1)-1} \\
& =\frac{1}{z-1} \cdot \frac{1}{1-\frac{1}{(z-1)}} \\
& =\frac{1}{(z-1)}\left(1-\frac{1}{(z-1)}\right)^{-1},\left|\frac{1}{z-1}\right|<1 \\
& =\frac{1}{(z-1)}\left(1+\frac{1}{z-1}+\frac{1}{(z-1)^{2}}+\frac{1}{(z-1)^{3}}+\cdots\right) \\
& =\frac{1}{(z-1)^{2}}+\frac{1}{(z-1)^{2}}+\frac{1}{(z-1)^{3}}+\cdots \\
& =\sum_{n=1}^{\infty} \frac{1}{(z-1)^{n}} \quad \text { in }|z-1|>1
\end{aligned}
$$

$\Rightarrow$ The Laurent series of a given analytic for $f(z)$ in its annulus of convergence is unique.
\# Laurent series of $\frac{1}{z-2}$ in $|z|>2$.

$$
\begin{aligned}
\frac{1}{z-2} & =\frac{1}{z}\left(1-\frac{2}{z}\right)^{-1} \\
& =\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{2}{z}\right)^{n} \\
& =\frac{1}{z}\left(1+\frac{2}{z}+\frac{2^{2}}{z^{2}}+\cdots\right) \\
& =\frac{1}{z}+\frac{2}{z^{2}}+\frac{2^{2}}{z^{3}}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{2^{n}}{z^{n+1} \quad . \quad \text { for }|z|>2} .
\end{aligned}
$$

