Zeros, Singularities \& Residue Theorem:-

Singular point:-
A point $z_{0} \in \mathbb{C}$ is said to be a singular point of a $f=f: D \rightarrow \mathbb{C}$ if f is not analytic at z_{0}, but every neighbourhood of z_{0} contains a point at which f is analytic.

EXM. $f(z)=\frac{1}{z}: z=0$ is a singular pt.
$f(z)=\frac{z+1}{z^{3}\left(z^{2}+1\right)}: 0, \pm i$ are three singular

$$
f(z)=|z|^{2}
$$

f is nowhere analytic. So, it has no singular pt.
$f(z)=\bar{z}: \quad f$ is nowhere analytic. So, it has no singular point.

Isolated Singularity : A singular point z_{0} of f is
said to be isolated if there is a deleted neighbourhood $0<\left|z-z_{0}\right|<\delta$ of $z_{0}\left(N_{\delta}\left(z_{0}\right)-\left\{z_{0}\right\}\right)$ throughout which f is analytic.

ExM $f(z)=\tan z, \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$ are isolated singuarities. $f(z)=\operatorname{Ln}(z)$, principal branch. $z=0$ is a singularity. But not an isolated singularity.
\Rightarrow If f has isontater singularity at $x=x_{0}$, by Laurent theorem, we can write,

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(x-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}
$$

for $0<\left|z-z_{0}\right|<R$, for rome $R>0$
$\Rightarrow \sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}$ is called the principal part of the L.S.

Now, if $b_{k}=0 \quad \forall k \geqslant N_{0}$, i.e, the principal part has finite terms

$$
\frac{b_{1}}{\left(z-z_{0}\right)}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\cdots+\frac{b_{N_{0}}}{\left(z-z_{0}\right)^{N_{0}}},
$$

then $z=z_{0}$ is called a pole of f, and N_{0} is called its order.

If $N_{0}=1, z_{0}$ is called a simple pole.

Deft:- A function f, having an isolated singular point. z_{0}, has a pole at z_{0} of order $m(\epsilon \mathbb{N})$ if

$$
=l(\neq 0, \infty)
$$

\Rightarrow
If an isolated singular point z_{0} off is not apole, it is called an essential singular point.

ExT. $f(z)=\frac{1}{z(z-2)^{5}}+\frac{1}{(z-2)^{2}}$
$z=0,2$ are two isolated singular points of f.
Now, $\lim _{z \rightarrow 0} z f(z)=-\frac{1}{2^{5}} \neq 0: z$ is a simple pole

$$
\lim _{z \rightarrow 2}(z-2)^{5} f(z)=\frac{1}{2}: \neq 0: \begin{aligned}
& z=2 \text { is a pole of } \\
& \text { order } 5 .
\end{aligned}
$$

ExaM $f(z)=e^{1 / z}=\sum_{n=0}^{\infty} \frac{1}{n!z^{n}}, \quad 0<|z|$
The Principal part of the L.S. has infinite terms, so, $z=0$ is an essential singular. point.

Removable Singularity:-
f is said to have a removable singularity at $z=z_{0}$ if $f(z)$ is not analytic at z_{0}, but can be made analytic by assigning a suitable value $f\left(z_{0}\right)$.

Exc. $\quad f(z)=\frac{\sin z}{z}, \quad z \neq 0$
f has removable singularity at $z=0$, since. $f(0)=1$ make f analytic.

Residues:-
Let, f has isolated singularity at $z=z_{0}$. Then, by Laurent Theorem, we can write:

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n} \text {, with } 0<\left|z-z_{0}\right|<R \text {, }
$$

$$
C_{n}=\frac{1}{2 m} \int_{c} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \text {, where }
$$

C is any + vely oriented simple closed curve in $0<\left|z-z_{0}\right|<R$.

Now $n=-1$.

$$
C_{-1}=\frac{1}{2 \pi i} \int_{c} f(z) d z
$$

i.e. $\quad \int_{c} f(z) d z=2 \pi i c_{-1}$
C_{-1} is the co-eff. of the term $\frac{1}{\left(z-z_{0}\right)}$.

Define $C_{-1}=\operatorname{Res}_{z=z_{0}} f(z)$, residue of f at the isolated singular point z_{0}.
and $\quad \int_{c} f(z) d z=2 \pi i \operatorname{Res}_{z=z_{0}} f(z)$

$$
\text { ExaM. } \int_{|z|=1} z^{2} \sin \left(\frac{1}{z}\right) d z
$$

$z=0$ is an isolated singular point of

$$
f(z)=z^{2} \sin \left(\frac{1}{z}\right) .
$$

Now, in $0<|z|<\infty$

$$
\begin{aligned}
f(z) & =z^{2} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)!z^{2 n+1}} \\
& =z^{2}\left(\frac{1}{z}-\frac{1}{3!z^{3}}+\frac{1}{5!z^{5}}-\cdots\right) \\
& =z-\frac{1}{3!z}+\frac{1}{5!z^{3}}-\cdots
\end{aligned}
$$

So, $\operatorname{Res}_{z=0} f(z)=-\frac{1}{3!}=-\frac{1}{6}$.
Hence, $\quad \int_{|z|=1} f(z) d z=-2 \pi i \cdot \frac{1}{6}=-\frac{\pi i}{3}$.

Residue Theorem:-
Let, C be a simple closed contour, which is positively oriented. If f is analytic inside and on C except for a finite number of singular points $Z_{k}(k=1,2, \ldots, n)$ inside C, then

$$
\int_{c} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)
$$

- Calculation of Residues:-

Rule for by-passing Laurent Series Calculation:
A_{n} isolated singular point z_{0} of f is a pole of order m iff

$$
f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}} \text {, where }
$$

$\phi(z)$ is analytic and $\phi\left(z_{0}\right) \neq 0$. and

$$
\begin{aligned}
& \operatorname{Res} f(z)=\phi\left(z_{0}\right), \quad m=1 \\
& \text { or } \operatorname{Res}_{z=z_{0}}^{z} f(z)=\frac{\phi^{(m-1)}\left(z_{0}\right)}{(m-1)!}, m \geqslant 2 \text {. }
\end{aligned}
$$

Suppose $m=4$:

$$
\begin{aligned}
f(z) & =\frac{b_{1}}{\left(z-z_{0}\right)}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\frac{b_{3}}{\left(z-z_{0}\right)^{3}}+\frac{b_{4}}{\left(z-z_{0}\right)^{4}}+\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \\
& =\frac{\sum_{i=1}^{4} b_{1}\left(z-z_{0}\right)^{4 i}+\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n+4}}{\left(z-z_{0}\right)^{4}} \equiv \frac{\Phi(z)}{\left(z-z_{0}\right)^{4}} . \\
\Phi\left(z_{0}\right) & =b_{4} \neq 0 .
\end{aligned}
$$

\& $\quad \phi(z)=b_{1}\left(z-z_{0}\right)^{3}+\cdots \cdot$

$$
\begin{aligned}
& \therefore \phi^{(3)}(z)=3 \cdot 2 \cdot 1 \cdot b_{1}+\cdots \\
& \Rightarrow \quad b_{1}=\frac{\Phi^{(3)}\left(z_{0}\right)}{3!}=\operatorname{Res}_{z=z_{0}} f(z)
\end{aligned}
$$

EM.

$$
f(z)=\frac{z+1}{z^{2}+9}
$$

$z=3 i$ is an isolated singular pt.

$$
f(z)=\frac{\phi(2)}{(z \dot{\$} 3 i)}, \phi(z)=\frac{z+1}{(z \pm 3 i)}
$$

$\phi(3 i) \neq 0$ \& ϕ is analytic at $z=3 i$.

$$
\operatorname{Res}_{z=3 i} f(z)=\phi(31)=\frac{3-i}{6} .
$$

EXM. $\quad f(z)=\frac{z^{3}+2 z}{(z-i)^{3}}=\frac{\phi(z)}{(z-i)^{3}}$.
$\phi(i)=-i+2 i=i \neq 0, \phi$ is analytic at i.
$z=i$ is a pole of f of order 3 .

$$
\operatorname{Res}_{z=i} f(z)=\frac{\phi^{(2)}(i)}{2!}=\frac{6 i}{2}=\frac{3 i}{}
$$

EXT. $\quad f(z)=z \sin \frac{1}{z}$
$z=0$ is an isolated essential singular point.

$$
\begin{aligned}
f(z)=z \sin \frac{1}{z} & =z \sum_{n=0}^{\infty} \frac{1}{z^{2 n+1}(2 n+1)!} \quad 0<|z|<\infty \\
& =1-\frac{1}{3!z^{2}}+\cdots \\
\therefore \quad \begin{array}{l}
\operatorname{Res} f(z) \\
z=0
\end{array} & =0 . \\
f(z)=z \cos \left(\frac{1}{z}\right) & =z\left(1-\frac{1}{2!z^{2}}+\frac{1}{4!z^{4}}-\cdots\right) \\
& =z-\frac{1}{2!z}+\frac{1}{4!z^{3}}-\cdots \\
\therefore \quad \begin{array}{l}
\operatorname{Res} f(z) \\
z=0
\end{array} & =-\frac{1}{2!}=-\frac{1}{2} .
\end{aligned}
$$

EXr.
$\int_{c} \frac{5 z^{2}}{(z-1)^{2}(z+3)} d z$, c is any simple closed curve
with

1) $1,-3$ inside C,
2) 1,-3 ane outside
C.

If $1,-3$ are outrode $c, f(z)=\frac{5 z^{2}}{(z-1)^{2}(z+3)}$ is analytic aside and on C.
11) So, by $C I T, \quad \int_{c} f(z) d z=0$.
1)

Ex.

$$
\int_{|z|=3 / 2} \frac{\tan z}{z^{2}-1} d z
$$

$\tan z$ is not analytic at $\pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \ldots$, but they are outside $|z|=\frac{3}{2}$.
$f(z)=\frac{\tan z}{z^{2}-1}$ has singularity at $z= \pm 1$. And $z= \pm 1$ are poles of f.

$$
\begin{aligned}
& \operatorname{Res}_{z=1}(f(z))=\left.\frac{\tan z}{z+1}\right|_{z=1}=\frac{\tan 1}{2} \\
& \operatorname{Res}_{z=-1}(f(z))=\left.\frac{\tan z}{z-1}\right|_{z=-1}=\frac{\tan 1}{2}
\end{aligned}
$$

By Residue the,

$$
\begin{aligned}
\int_{c} f(z) d z & =2 \pi i\left(\frac{\tan 1}{2}+\frac{\tan 1}{2}\right) \\
& =2 \pi i \tan 1
\end{aligned}
$$

EXC

$$
\int_{C}\left(\frac{z e^{\pi z}}{z^{4}-16}+z e^{\pi z}\right) d z \quad C: \quad x^{2}+\frac{y^{2}}{9}=1
$$

$z= \pm 2 i$ are two simple poles of $\quad f_{1}(z)=\frac{z e^{\pi z}}{z^{4}-16}$

$$
\begin{aligned}
\therefore \quad \operatorname{Res}\left(f_{1}(z)\right) & =\left.\frac{z e^{\pi z}}{\left(z^{2}-4\right)(z+2 i)}\right|_{z=2 i} \\
& =\frac{2 i}{-8 \cdot 4 i}=-\frac{1}{16} . \\
\operatorname{Res}_{z=-2 i}\left(f_{1}(z)\right) & =\left.\frac{z e^{\pi z}}{\left(z^{2}-4\right)(z-2 i)}\right|_{z=-2 i}=\frac{7{ }^{2 i}}{-8 \cdot(+4 i)}=-\frac{1}{16} . \\
\therefore \quad \int_{c} f_{1}(z) d z & =2 \pi i\left(-\frac{1}{16}-\frac{1}{16}\right)=-\frac{2 \pi}{8} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
f_{2}(z)=z e^{\pi / z} & =z \sum_{k=0}^{\infty} \frac{\pi^{k}}{z^{k} k!} \\
& =z\left(1+\frac{\pi}{z}+\frac{\pi^{2}}{2 z^{2}}+\cdots\right) \\
& =z+\pi+\frac{\pi^{2}}{2 z}+\cdots
\end{aligned}
$$

So, $\operatorname{Res}_{z=0}\left(f_{2}(z)\right)=\frac{\pi^{2}}{2}$.
Hence, $\quad \int_{c} f_{2}(z) d z=2 \pi \frac{\pi^{2}}{2}$.
So, $\quad \int_{c} f(z) d z=2 \pi i\left(\frac{\pi^{2}}{2}-\frac{1}{8}\right)=\pi i\left(\pi^{2}-\frac{1}{4}\right)$

Zeros:-
Let, f is analytic at z_{0}. So, f has derivaties of all order at z_{0}. If

$$
\begin{aligned}
& \text { all order at } z_{0} \\
& f\left(z_{0}\right)=0=f^{\prime}\left(z_{0}\right)=f^{\prime \prime}\left(z_{0}\right)=\cdots=f^{(m-1)}\left(z_{0}\right) \text {, but }
\end{aligned}
$$

$f^{(m)}\left(z_{0}\right) \neq 0$ for rome $m \in \mathbb{N}$, then f is raid to have a zero of order m at z_{0}.
\Rightarrow If $m=1, z_{0}$ is a simple zero of f.
$\Rightarrow \quad A_{s} f$ is analytic at z_{0},

$$
f(z)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}
$$

If f has zero of order m at z_{0},

$$
\begin{aligned}
f(z) & =\sum_{k=m}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k} \\
& =\left(z-z_{0}\right)^{m} \sum_{k=0}^{\infty} \frac{f^{(k+m)}\left(z_{0}\right)}{(k+m)!}\left(z-z_{0}\right)^{k} \\
& =\left(z-z_{0}\right)^{m} g(z) .
\end{aligned}
$$

with g analytic at z_{0} and $g\left(z_{0}\right) \neq 0$.
EXC. $f(z)=z^{3}-8=(z-2)\left(z^{2}+2 z+8\right)$ has zero of order 1 at 2 .

ExT. $f(z)=z\left(e^{z}-1\right), \quad z_{0}=0$.
f is analytic at $z_{0}=0$.

$$
f(0)=0=f^{\prime}(0), f^{\prime \prime}(0) \neq 2
$$

$z=0$ is a zeno of f of order 2 .

The
Let, $p \& q$ are two analytic fuss at z_{0}. If $p\left(z_{0}\right) \neq 0$ \& $q\left(z_{0}\right)=0$ \& $q^{\prime}\left(z_{0}\right) \neq 0$., then z_{0} is a simple pole of $f(z)=\frac{p(z)}{q(z)}$ and

$$
\begin{gathered}
\operatorname{Res}_{z=z_{0}}(f(z))=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)} \\
\Rightarrow \quad q(z)=\left(z-z_{0}\right) g(z), g\left(z_{0}\right) \neq 0 . \\
\therefore \quad f(z)=\frac{p(z)}{q(z)}=\frac{p(z) / g(z)}{\left(z-z_{0}\right)}=\frac{\phi(z)}{\left(z-z_{0}\right)}, \phi\left(z_{0}\right) \neq 0
\end{gathered}
$$

f has pole at z_{0} of order 1 .
So, $\operatorname{Res}_{z=z_{0}}(f(z))=\phi\left(z_{0}\right)=\frac{p\left(z_{0}\right)}{g\left(z_{0}\right)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}$

ExaM.

$$
f(z)=\cot (z)=\frac{\cos z}{\sin z}=\frac{p(z)}{q(z)}
$$

$z=n \pi$ are zero of $q(z)$.

$$
p(n \pi)=(-1)^{n} \neq 0, \quad q(n \pi)=0, \quad q^{\prime}(n \pi) \neq 0 .
$$

So, at $z=n \pi, f$ has a simple pole. \&

$$
\operatorname{Res}_{z=n \pi}(f(z))=\frac{P(n \pi)}{q^{\prime}(n \pi)}=\frac{(-1)^{n}}{(-1)^{n}}=1
$$

ExM $\int_{|z|=3} \frac{e^{z}}{(z+1)^{n}} d z$
$f(z)=\frac{e^{z}}{(z+1)^{n}} \cdot \quad z=-1$ is a pole of order n.

$$
\left.\begin{array}{rl}
& \operatorname{Res}_{z=-1}(f(z))
\end{array}\right)=\frac{1}{(n-1)!} \frac{\left.d^{n-1}(z+1)^{n} f(z)\right]_{z=-1}}{}=\frac{e^{-1}}{(n-1)!}
$$

