Non-parametric form:-

$$
\begin{equation*}
\frac{d x}{a(x, y, u)}=\frac{d y}{b(x, y, u)}=\frac{d u}{c(x, y, u)} \tag{1}
\end{equation*}
$$

Theorem:-
Let, $D \subseteq \Omega_{0}$ and $S: z=u(x, y)$ be a surface in \mathbb{R}^{3} where $u: D \rightarrow \mathbb{R}$ is a continuously diff. function. Then the following are equivalent:

1) S is an integral surface of

$$
\begin{equation*}
a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u) \tag{II}
\end{equation*}
$$

II) S is a union of characteristic curves of the PDE (II).

Proof:-

1) \Rightarrow Let, $S: Z=u(x, y)$ is an integral surface.

So,

$$
\begin{aligned}
& a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u) \\
& \quad(x, y) \in D
\end{aligned}
$$

To prove that, for every $P \in S$, a characteristic curve γ_{p} through P lies entirely $m S$.
or to prove

$$
\begin{aligned}
& S= U \gamma_{p} \\
& \gamma_{p} \text { is a } \\
& \text { characteristic } \\
& \text { curve. } \\
& y(t), \quad z=z(t), \quad t \in I
\end{aligned}
$$

$\gamma_{p}: \quad x=x(t), y=y(t), \quad z=z(t), \quad t \in I$.
and $P=\left(x\left(t_{0}\right), y\left(t_{0}\right), z\left(t_{0}\right)\right) \quad$ for rome $t_{\hat{\delta}} \in I$.
Let, $v(t)=z(t)-u(x(t), y(t))$.
As $\quad P \in S, \quad V\left(t_{0}\right)=0$.

Now,

$$
\begin{align*}
\frac{d v}{d t} & =\frac{d z}{d t}-u_{x} x^{\prime}(t)-u_{y} y^{\prime}(t) \\
& =c(x, y, z)-u_{x} a(x, y, z)-u_{y} b(x, y, z) \\
& =c(x, y, v+u)-u_{x} a(x, y, v+u)-u_{y} \cdot b(x, y, v+u) \tag{111}
\end{align*}
$$

This is an IVP. with $V\left(t_{0}\right)=0$.
As a, b, c are continuously diff., we can apply Picard-Lindelof for ODE. Moreover, $V(t)=0$ is a sols of (iii). So by uniqueness of soln., thin is the only sole such that $V\left(t_{0}\right)=0$. So, γ_{p} lies on S.
II) \Rightarrow D) Let, S is a union of characteristic curves of (II).

To prove that S is an integral surface. i.e. to show $z^{\prime}=u(x, y)$ solves (II).
Let $P\left(x_{0}, y_{0}, u\left(x_{0}, y_{0}\right)\right)$ be any point on S. Since S is a union of characteristic: curves, $\exists \gamma_{p}$ through P. lies on 5 .

Now, the normal direction to S at P

$$
=\left(u_{x}\left(x_{0}, y_{0}\right), u_{y}\left(x_{0}, y_{0}\right),-1\right) \text { and }
$$

$\left(a\left(x_{0}, y_{0}, u\left(x_{0}, y_{0}\right)\right), b\left(x_{0}, y_{0}, u\left(x_{0}, y_{0}\right)\right), c\left(x_{0}, y_{0}, u\left(x_{0}, y_{0}\right)\right)\right)$ is the direction of tangent to γ_{p}. (By definition).

So, (II) is satisfied.
(lagrange)
Theorem:-
The general sols of (II) is $F(\phi, \psi)=0$ where F is an arbitrary fry of $\phi \& \psi$ and $\phi(x, y, u)=c_{1}, \quad \psi(x, y, u)=c_{2}$ are two sole of the characteristic equations:

$$
\frac{d x}{a}=\frac{d y}{b}=\frac{d u}{c}, \cdots(1)
$$

Proof:-
Since $\phi(x, y, u)=c_{1}$ \& $\psi(x, y, u)=c_{2}$, we have

$$
\begin{aligned}
& d \phi=\phi_{x} d x+\phi_{y} d y+\phi_{u} d u=0 \\
& d \psi=\psi_{x} d x+\psi_{y} d y+\psi_{u} d u=0
\end{aligned}
$$

Now, from (1), we get

$$
\begin{align*}
& a \phi_{x}+b \phi_{y}+c \phi_{u}=0 \tag{A}\\
& \& \quad a \psi_{x}+b \psi_{y}+c \psi_{u}=0 \tag{B}
\end{align*}
$$

We now solve (A) and (B)

$$
\begin{aligned}
& \frac{a}{\frac{\partial(\phi, \psi)}{\partial(y, u)}}=\frac{b}{\frac{\partial(\phi, \psi)}{\partial(u, x)}}=\frac{c}{\frac{\partial(\phi, \psi)}{\partial(x, y)} \ldots(*)} \\
& \text { where } \frac{\partial(\phi, \psi)}{\partial(x, y)}=\left|\begin{array}{ll}
\phi_{x} & \phi_{y} \\
\psi_{x} & \psi_{y}
\end{array}\right| \neq 0 \text { i.e. } \phi \& \psi . \\
& \text { ore li. }
\end{aligned}
$$

Now, we have $F(\phi, \psi)=0$ i.e.

$$
\begin{aligned}
& F_{x}=F_{\phi}\left(\phi_{x}+\phi_{u} u_{x}\right)+F_{\psi}\left(\psi_{x}+\psi_{u} \cdot u_{x}\right)=0 \\
& \& F_{y}=F_{\phi}\left(\phi_{y}+\phi_{u} \cdot u_{y}\right)+F_{y}\left(\psi_{y}+\psi_{u} \cdot u_{y}\right)=0
\end{aligned}
$$

For non-trivial sols $F_{\phi} \& F_{\psi}$,

$$
\left|\begin{array}{ll}
\phi_{x}+\phi_{u} u_{x} & \psi_{x}+u_{x} \psi_{u} \\
\phi_{y}+u_{y} \phi_{u} & \psi_{y}+\psi_{u} u_{y}
\end{array}\right|=0
$$

ie.

$$
\left.u_{x} \frac{\partial(\phi, \psi)}{\partial(y, u)}+u_{y} \frac{\partial(\phi, \psi)}{\partial(u, x)}=\frac{\partial(\phi, \psi)}{\partial(x, y)} \ldots \ldots * *\right)
$$

Combining (*) \& (**) we get

$$
a u_{x}+b u_{y}=c
$$

This completes the proof.

ExT:-
Solve: $\quad x u_{x}+y u_{y}=u$. \quad (Linear)

Characteristic equs:

$$
\begin{aligned}
& \frac{d x}{x}=\frac{d y}{y}=\frac{d u}{u} \\
& \Rightarrow \frac{d y}{d x}=\frac{y}{x} \Rightarrow \ln \left(\frac{y}{x}\right)=\ln \left(c_{1}\right) \\
& \Rightarrow \quad \Phi(x, y, u)=\frac{y}{x}=c_{1} \\
& \& \quad \frac{d y}{y}=\frac{d u}{u} \Rightarrow \quad Y(x, y, u)=\frac{u}{y}=c_{2}
\end{aligned}
$$

So the general, solution is: $F\left(\frac{y}{x}, \frac{u}{y}\right)=0$ where F is an arbitrary fry.
H.W

ExT:-
Solve: $x u_{x}+y u_{y}=n u$
Characteristic eq:

$$
\frac{d x}{x}=\frac{d y}{y}=\frac{d u}{n u}
$$

$\phi(x, y, u)=\frac{y}{x}=c_{1}$, So the general sols.
$\& \psi(x, y, u)=\frac{u}{y^{n}}=c_{2}$ is:

$$
F\left(\frac{y}{x}, \frac{u}{y^{n}}\right)=0
$$

H.W

Solve: $\quad x^{2} u_{x}+y^{2} u_{y}=(x+y) u$
Ans: $F\left(x^{-1} \frac{1}{6} y^{-1}, \frac{x-y}{u}\right)=0$ or $F\left(\frac{x y}{u}, \frac{x-y}{u}\right)=0$

Problems on Cauchy data/IVP:-
A. Vrieque same

1. $x u_{x}-y u_{y}=u$

$$
\mu: u=x^{2} \text { on } y=x, \quad 1 \leq y \leq 2
$$

Ponametrization of Cauchy data:

$$
\begin{equation*}
\Gamma: \quad x(s)=s, \quad y(s)=s, \quad u(s)=s^{2}, \quad s \in[1,2] \tag{1}
\end{equation*}
$$

Characteristic eq:

$$
\begin{align*}
& \quad \frac{d x}{d t}=x, \quad \frac{d y}{d t}=-y, \quad \frac{d u}{d t}=u \\
& \Rightarrow \quad x=c_{1} e^{t}, \quad y=c_{2} e^{-t}, \quad u=c_{3} e^{t} . \tag{4}
\end{align*}
$$

To get the whole integral surface, we take

$$
x=X(s, t), \quad y=Y(s, t), \quad u=U(s, t)
$$

W.L.O.G. let, at $t=0$: the parametrization gives the curve Γ.

$$
\begin{aligned}
& \text { the curve } \Gamma . \\
& \text { i.e. } \quad X(s, 0)=s, \quad Y(s, 0)=s, \quad U(s, 0)=s^{2}
\end{aligned}
$$

From (II) $\Rightarrow \quad c_{1}=s, \quad c_{2}=s, \quad c_{3}=s^{2}$
Therefor, $X(s, t)=s e^{t}, \quad Y(s, t)=s e^{-t}, \quad U(s, t)=s^{2} e^{t}$

$$
x y=s^{2}, \quad \frac{x}{y}=e^{2 t}
$$

So, eliminating $s \& t$,

$$
U=x y \sqrt{\frac{x}{y}}
$$

Hence, the sols is $u=x y \sqrt{\frac{x}{y}}=x \sqrt{x y}$.

As s varies we get diff. pt on the cauchy data, and as t varies we get diff pt on a char curve.

$$
\left\{\begin{array}{rl}
x=X(s, t), y=Y(s, t) \Longrightarrow & s \pm S(x, y) \| \text { Need } \begin{array}{l}
\text { Inverse } f_{n} \\
\text { Theorem }
\end{array} \\
& t=T(x, y)
\end{array} \| \begin{array}{ll}
\quad u=U(s, t)=u(x, y)
\end{array} \quad\right. \text { (kt) }
$$

Inverse function Theorem:-
Let, $G: U\left(\leqslant \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ be a C^{\prime} function. $G \equiv\left(G_{1}, G_{2}, G_{3}, \ldots, G_{n}\right)$ Let,

$$
J_{G}=\left(\begin{array}{cccc}
\frac{\partial G_{1}}{\partial x_{1}} & \frac{\partial G_{1}}{\partial x_{2}} & \cdots & \frac{\partial G_{1}}{\partial x_{n}} \\
\frac{\partial G_{2}}{\partial x_{1}} & \vdots & & \vdots \\
\vdots & \vdots & & \vdots \\
\frac{\partial G_{n}}{\partial x_{1}} & & & \frac{\partial G_{n}}{\partial x_{n}}
\end{array}\right) \text { and }
$$

$\left|J_{G}\right| \neq 0$ at \bar{x}_{0}. Then, \exists an open set $V \subset U$ with $\bar{x}_{0} \in V$ and an open set $W \subseteq \mathbb{R}^{n}$ with $G\left(\bar{x}_{0}\right) \in W$ such that $\vec{G}: V \rightarrow W$ is $1-1$, onto and $G^{-1}: W \rightarrow V$ is c^{\prime}.
$(\mathbb{k}): \quad G=(x(s, t), Y(s, t))$ with $\bar{x}_{0}=(s, 0)$.

$$
\left|\begin{array}{ll}
x_{s} & x_{t} \\
y_{s} & y_{t}
\end{array}\right|_{(s, 0)} \neq 0 \quad \text { (Transversality condition) }
$$

