Fully non-linear PDE:

$$
f\left(x, y, u, u_{x}, u_{y}\right)=0
$$

Notation: $p=u_{x}, q=u_{y}$.

Assumption:-

1) f is twice continuously differentiable in x, y, u, u_{x}, u_{y},
2) $f_{p}^{2}+f_{q}^{2} \neq 0$

The geometry for non-linear is more involved than in the quasi-lin. case.

Existence of the solution is guranteed by Cauchy-Klowen. theorem.

Unlike quasi-linear case, we do not have a char. direction. Let, $P\left(x_{0}, y_{0}, z_{0}\right)$ be a point on the integral surface $z=u(x, y)$. The eqn of the tangent plane at P is:

$$
\begin{equation*}
u_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+u_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=z-z_{0} \tag{1}
\end{equation*}
$$

Since, u is unknown, $p_{0}=u_{x}\left(x_{0}, y_{0}\right)$ \& $q_{0}=u_{y}\left(x_{0}, y_{0}\right)$ are also unknown. But they satisfy:

$$
\begin{equation*}
f\left(x_{0}, y_{0}, z_{0}, p_{0}, q_{0}\right)=0 \tag{11}
\end{equation*}
$$

(1) \& (II) determine a one-panameter family of planes. Dosing through $P\left(x_{0}, y_{0}, z_{0}\right)$ and one of them is the tangent plane to $z=u(x, y)$ at $P\left(x_{0}, y_{0}, z_{0}\right)$.

$$
\left\{\begin{array}{l}
H(x, y, z, p, q)=z-z_{0}-p\left(x-x_{0}\right)-q\left(y-y_{0}\right) \tag{III}\\
\& \quad f\left(x_{0}, y_{0}, z_{0}, p, q\right)=0
\end{array}\right.
$$

Consider the envelope of the family of planes described by (III) \& (iv). such that:

Envelope touches each member of the family of planes.
(1
All such planes pass through $P\left(x_{0}, y_{0}, z_{0}\right)$ and thus envelope. a cone with vertex P. These cones are called Mange cone.

$$
\Rightarrow \quad(i v) \Rightarrow \quad q=G\left(x_{0}, y_{0}, z_{0}, p\right)
$$

$$
\begin{array}{ll}
\text { (iii) } \Rightarrow & H(x, y, z, p, G(p))=0 \\
\text { i.e. } & z-z_{0}=p\left(x-x_{0}\right)+G(p)\left(y-y_{0}\right) \tag{v}
\end{array}
$$

Now, take derivative of (iv) $\&(v)$ w.r. to p.to get

$$
\begin{align*}
& 0=\left(x-x_{0}\right)+G^{\prime}(p)\left(y-y_{0}\right) \tag{1}\\
& 0=f_{p}+G^{\prime}(p) f_{q} \tag{vi1}
\end{align*}
$$

Eliminating $G^{\prime}(p)$ from (vi) \& (vii), we get

$$
f_{q}\left(x-x_{0}\right)-f_{p}\left(y-y_{0}\right)=0 \quad \therefore(v|l|) ;
$$

So, we have from (v) \& (viii)

$$
\begin{equation*}
\frac{x-x_{0}}{+f_{p}}=\frac{y-y_{0}}{+f_{q}}=\frac{z-z_{0}}{p f_{p}+q f_{q}} \tag{1x}
\end{equation*}
$$

(ix) Corresponds to the eqn of lines that generate the 'Mange Cone' as we vary p. The direction of such a line can be taken as a characteristic direction

Let, $(x(t), y(t), u(t))$ be a curve through $P\left(x_{0}, y_{0}\right.$, on $z=u(x, y)$. Therefore, the charactenstic system would be:

$$
\begin{gather*}
\frac{d x}{d t}=f_{p}, \frac{d y}{d t}=f_{q} \\
\frac{d u}{d t}=p f_{p}+\varepsilon f_{q} . \tag{*}\\
x(0)=x_{0}, y(0)=y_{0}, u(0)=z_{0} .
\end{gather*}
$$

(*) is under-determind, as $p \& q$ are afro unknown,

$$
f(x, y, u, p, q)=0
$$

Take derivative w.r. to $x \& y$.

$$
\left.\begin{array}{r}
f_{x}+f_{u} p+f_{p} \cdot p_{x}+f_{q} \cdot q_{x}=0 \\
\& \quad f_{y}+f_{u} q+f_{p} \cdot p_{y}+f_{q} \cdot q_{y}=0
\end{array}\right\}-(x *)
$$

Now along a char curve.

$$
\left.\begin{array}{rlrl}
\frac{d p}{d t} & =p_{x} \frac{d x}{d t}+p_{y} \cdot \frac{d y}{d t} & {\left[p_{y}=q_{x}\right]} \\
& =-f_{x}-f_{u} p & \text { from (**)} \tag{***}\\
\frac{d q}{d t} & =-f_{y}-q f_{u} &
\end{array}\right\}
$$

Similarly, $\quad \frac{d q}{d t}=-f_{y}-q f_{u}$
(*) $\&(* * *)$ together form characteristic equations or Chanpit's Method.

A solution of the char eqns is known as characters Strip.

Theorem:
The function $f(x, y, u, p, q)$ is constant along every char. strip of the eqn $f(x, y, u, p, a)=0$.

Proof:-
Along a char strip, we have

$$
\begin{aligned}
& \frac{d}{d t} f(x(t), y(t), u(t), p(t), q(t))=f_{x} x^{\prime}+f_{y} y^{\prime}+f_{u} u^{\prime}+f_{p} p^{\prime}+f_{z} q^{\prime} \\
& =f_{x} f_{p}+f_{y} f_{q}+f_{u}\left(p f_{p}+q f_{q}\right) \\
& -f_{p}\left(f_{x}+f_{u} p\right) \\
& \therefore f_{q}\left(f_{y}+q f_{u}\right) \\
& =0 \text {. }
\end{aligned}
$$

Therefore, $f(x, y, u, p, q)$ - is constant along the strop.

Cauchy problem:-
An integral surface $z=u(x, y)$ contains an initial curve μ :

$$
\begin{aligned}
& \Gamma: \\
& x=g(s), \quad y=h(s), \quad u=\delta(s) .
\end{aligned}
$$

Steps for solution:
To find $x=x(s, t), y^{\prime}=Y(s, t), u=U(s, t)$

$$
p=\Phi(s, t), \quad q=\Psi(s, t) \text { such }
$$

that,

$$
\begin{aligned}
& \frac{d x}{d t}=f_{p}, \quad \frac{d y}{d t}=f_{q}, \quad \frac{d u}{d t}=p f_{p}+q f_{q} \\
& \frac{d p}{d t}=-f_{x}-p f_{u}, \quad \frac{d q}{d t}=-f_{y}-q f_{u}
\end{aligned}
$$

and at $t=0$:

$$
\begin{aligned}
& x=g(s), y=h(s), u=J(s), p=\phi(s), q=\psi(s) \\
& f(g), f(s), f(s), h(s), \delta(s), \phi(s,), \psi(s)))=0
\end{aligned}
$$

and $\quad \frac{d u}{d s}=J^{\prime}(s)=p g^{\prime}(s)+q h^{\prime}(s)$.

At the end eliminate $s .2 t$ to get $z=u(x, y)$, provide

$$
\left|\begin{array}{ll}
x_{s} & x_{t} \\
y_{s} & y_{t}
\end{array}\right|=\left|\begin{array}{ll}
g^{\prime}(s) & f_{p} \\
h^{\prime}(s) & f_{q}
\end{array}\right|=g^{\prime}(s) f_{q}-f_{p} h^{\prime}(s) \neq 0
$$

EXT:
Solve: $\quad p q=u, u(0, y)=y^{2}$

Let, $\quad f(x, y, u, p, q)=p q-u$

The char eqns are:

$$
\begin{aligned}
\frac{d x}{d t}=f_{p^{0}} & =q, \quad \frac{d y}{d t}=f_{q}=p, \quad \frac{d u}{d t}
\end{aligned}=p f_{p}+q f_{q} . ~=2 p q . ~ \begin{aligned}
\frac{d q}{d t} & =-f_{y}-q f_{u} \\
& =q .
\end{aligned}
$$

So, $\quad P(t)=c e^{t}, \quad q(t)=d e^{t}$

$$
\left.\begin{array}{c}
p(t)=c e^{t}, \quad q(t)=d e^{t} \tag{*}\\
x(t)=d e^{t}+d, \quad \& y(t)=c e^{t}+c_{1} \\
\& \quad u=c d e^{2 t}+k .
\end{array}\right\}
$$

Now, on Γ : at $t=0$.

$$
\begin{aligned}
& x=0, \quad y=s, \quad u=s^{2} \\
& p(s) \quad q(s)=u(s)=s^{2} \\
& \text { and } \frac{d u}{d s}=2 s=p(s) \frac{d x}{d s}+q(s) \frac{d y}{d s} \\
& =q(s) \\
& \therefore \quad p(s)=s / 2 .
\end{aligned}
$$

Let, $\quad x=x(s, t), \quad y=y(s, t), u=U(s, t), \quad p=\phi(s, t)$ $q=\psi(s, t) \quad$ is a char. strip.

$$
\begin{gathered}
c=s / 2, d=2 s, \quad d_{1}=-d_{1}=-2 s \\
c_{1}=s / 2, k=0 .
\end{gathered}
$$

Therefore we have:-

$$
\begin{gathered}
x(s, t)=2 s\left(e^{t}-1\right), \quad Y(s, t)=\frac{s}{2}\left(e^{t}+1\right) \\
U(s, t)=s^{2} e^{2 t} . \\
\phi(s, t)=\frac{s}{2} e^{t}, \quad \psi(s, t)=2 s e^{t} .
\end{gathered}
$$

Also,

$$
\text { Also, } \begin{aligned}
\left|\begin{array}{cc}
x_{s} & x_{t} \\
y_{s} & y_{t}
\end{array}\right| & =\left|\begin{array}{cc}
2\left(e^{t}-1\right) & 2 s e^{t} \\
\frac{1}{2}\left(e^{t}+1\right) & \frac{s}{2} e^{t}
\end{array}\right| \\
& =s\left(e^{2 t}-e^{t}\right)-s\left(e^{2}+e^{t}\right) \\
& =-2 s e^{t} \neq 0 \\
x+4 y=4 s e^{t}, & u=s^{2} e^{2 t}
\end{aligned}
$$

So, $u=\left[\frac{1}{4}(x+4 y)\right]^{2}$ is the sole.

Solve: $\quad 2 p^{2} x+2 y=u, \quad u(x, 1)=\frac{x}{2}$.
Let, $\quad f(x, y, u, p, q)=2 p^{2} x+q y-u$.
The char eqns:

$$
\begin{aligned}
& \frac{d x}{d t}=f_{p}=4 p x, \frac{d y}{d t}=f_{q}=y, \quad \frac{d u}{d t}=4 p^{2} x+q y \\
& \frac{d p}{d t}=-f_{x}-p f_{e c}=-2 p^{2}+p, \quad \frac{d q}{d t}=-f_{y}-f_{u}^{\prime} \cdot q \\
& =-q+q=0
\end{aligned}
$$

H.W. Solve: $p q=x y, \quad u(x, 0)=x$.

Ans: $u^{2}=x^{2}\left(1+y^{2}\right)$

$$
\begin{aligned}
& x(s, t)=s \cosh t \\
& Y(s, t)=\sinh t \\
& U(s, t)=s \cosh ^{2} t \\
& p(s, t)=\cosh t \\
& q(s, t)=s \sinh t
\end{aligned}
$$

Cauchy-Kowalewski Theorem:-

$$
\begin{aligned}
& a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u) \\
& \Gamma: y=f(s), \dot{y}=g(s), z=h(s), s \in I
\end{aligned}
$$

Version 1:-
Let, $\Gamma((f(s), g(s), h(s)$ with $h(s)=u(f(s), g(s)))$ be a non-characteristic curve i.e.

$$
\left|\begin{array}{ll}
x_{s} & x_{t} \\
y_{s} & y_{t}
\end{array}\right|=b f^{\prime}(s)-a g^{\prime}(s) \neq 0 \text {. and }
$$

a, b, c are c^{\prime} functions. Then, the cauchy problem
(1) has a solution in a neighbourhood of the initial curve Γ. The solution is locally unique near Γ.

Version 2:-
Consider

$$
\begin{aligned}
& \frac{d u}{d x}=F\left(x, y, u, u_{y}\right), \text { with } \\
& u\left(x_{0}, y\right)=g(y) . \quad g\left(y_{0}\right)=z_{0}, \quad g^{\prime}\left(y_{0}\right)=q_{0}
\end{aligned}
$$

Suppose g is a c^{\prime} function in a neighbourhood of y_{0}.
Also, F is continuous and its derivatives one cont. near $\left(x_{0}, y_{0}, z_{0}, z_{0}\right)$. Then \exists a unique $f_{n} \phi(x, y)$ s.t.
$1) \Phi$ is C^{\prime} near $\left(x_{0}, y_{0}\right)$
11) ϕ satisfies (II) near $\left(x_{0}, y_{0}\right)$
iii) In a nod of $y_{0}, \quad \phi\left(x_{0}, y\right)=g(y)$.

