Second Order PDEs

It deals with the classification of $2^{\text {nd }}$ order PDES and their Canonical forms.

Quasi-linear PDEC:

$$
\begin{gathered}
a\left(x, y, u, u_{x}, u_{y}\right) u_{x x}+2 b\left(x, y, u_{1} u_{x}, u_{y}\right) u_{x y}+c\left(x, y, u, u_{x}, u_{y}\right) u_{y y} \\
+d\left(x, y, u, u_{x}, u_{y}\right)=0
\end{gathered}
$$

Linear PDES:-

$$
\begin{align*}
a(x, y) u_{x x} & +2 b(x, y) u_{x y}+c(x, y) u_{y y}+d(x, y) u_{x} \\
& +e(x, y) u_{y}+f(x, y) u+g(x, y)=0 \tag{*}
\end{align*}
$$

The classification of PDEs is suggested by the classification of Conic section:

$$
a x^{2}+2 b x y+c y^{2}+d x+e y+f=0 \ldots
$$

It represents hyperbola, parabola or ellipse as b^{2}-ac is tue, for -ve.

Prototype or standard eqn:-
Parabolic: $u_{t}-u_{x x}=0$ (Heat)
Hyperbolic: $u_{H t}-u_{x x}=0$ (Wave)
Elliptic: $u_{x \dot{x}}+u_{y y}=0$ (Laplace)
A homogeneous linear ind -odds PDEs can be transtaned to one of the above by making a change of variables.

Theorem 5:-
With a change of coordinates from (x, y)
(ξ, η). the eq. (*) transforms to:

$$
\begin{equation*}
A(\xi, n) \omega_{\xi \xi}+2 B(\xi, n) \omega_{\xi \eta}+C(\xi, n) \omega_{n \eta}=\psi\left(\omega_{\xi,} \omega_{\eta}, \omega_{,}, \eta\right) \tag{**}
\end{equation*}
$$

where,

$$
\begin{aligned}
& A(\xi, n)=a \xi_{x}^{2}+2 b \xi_{x} \xi_{y}+c \xi_{y}^{2} \\
& B(\xi, n)=a \xi_{x} \eta_{x}+b\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+c \xi_{y} \eta_{y} \\
& C(\xi, n)=a \eta_{y x}^{2}+2 b n_{x} n_{y}+c n_{y}^{2} .
\end{aligned}
$$

Moreover

$$
B^{2}-A C=\left[\frac{\partial(\xi, \eta)}{\partial(x, y)}\right]^{2}\left(b^{2}-a c\right) \text {, so that }
$$

the form of the PDE remains invariant.

Proof:-
Let, $\omega(\xi, \eta)=u(x(\xi, \eta), y(\xi, \eta))$, such that.

$$
u(x, y)=\omega(\xi(x, y), \eta(x, y))
$$

Now,

$$
\begin{aligned}
& u_{x}=\omega_{\xi} \xi_{x}+\omega_{n} \eta_{x} \\
& u_{y}=\omega_{\xi_{\cdot}} \cdot \xi_{y}+\omega_{n} \cdot \eta_{y}
\end{aligned}
$$

Differentiating once more,

$$
\begin{aligned}
u_{x x}= & \omega_{\xi \xi^{\prime}} \xi_{x}^{2}+2 \omega_{\xi \eta} \xi_{x} n_{x}+\omega_{n n} n_{x}^{2}+l \cdot 0 . t \\
u_{x y}= & \omega_{\xi \xi} \xi_{x} \xi_{y}+\omega_{\xi n}\left(\xi_{x} n_{y}+\xi_{y} n_{x}\right) \\
& +\omega_{\eta n} n_{x} n_{y}+\omega_{\xi} \xi_{x y}+\omega_{n} n_{x} \\
u_{y y}= & \omega_{\xi \xi} \xi_{y}^{2}+2 \omega_{\xi n} \xi_{y} n_{y}+\omega_{\eta n} n_{y}^{2}+l \cdot o . t .
\end{aligned}
$$

Therefore, the eqn (*) becomes:

$$
A \omega_{\xi \xi}+2 B \omega_{\xi n}+c \omega_{\lambda n}=\psi\left(\omega_{\xi}, \omega_{n}, \omega, \xi, \eta\right)
$$

Where, $A(\xi, n) B(\xi, n), C(\xi, n)$ are as the required forms. Also,

$$
\left(\begin{array}{ll}
A & B \\
B & c
\end{array}\right)=\left(\begin{array}{ll}
\xi_{x} & \xi_{y} \\
\eta_{x} & \eta_{y}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\left(\begin{array}{cc}
\xi_{x} & \eta_{x} \\
\xi_{y} & \eta_{y}
\end{array}\right)
$$

Now, taking the determinant on both sides

$$
B^{2}-A C=\left(\xi_{x} n_{y}-\varepsilon_{y} n_{x}\right)^{2}\left(b^{2}-a c\right)
$$

Hence the proof.

Deft:- The PDE (k) is

1) hyperbolic if $b^{2}-a c>0$
ii) parabolic if $b^{2}-a c=0$
iii) Elliptic if $b^{2}-a c<0$

Canonical Fums:-
Since A and C have the same form, we may Choose \& \& η such that

$$
\begin{aligned}
A & =a \xi_{x}^{2}+2 b \xi_{x} \xi_{y}+c \xi_{y}^{2}=0 \quad \text { and } \\
C B & =a \eta_{x}^{2}+2 b \eta_{x} n_{y}+c \eta_{y}^{2}=0
\end{aligned}
$$

Now, $\quad a\left(\frac{\xi_{x}}{\xi_{y}}\right)^{2}+2 b\left(\frac{\xi_{x}}{\xi_{y}}\right)+c=0$ is the common eq for ξ and η.

Now, along the curve $\xi(x, y)=k$, we have

$$
d \xi=\xi_{x} d x+\xi_{y} d y=0 \quad \text { i.e. } \quad \frac{d y}{d x}=-\frac{\xi_{x}}{\xi_{y}} .
$$

So, $\quad a\left(\frac{d y}{d x}\right)^{2}-2 b\left(\frac{d y}{d x}\right)+c=0$

$$
\therefore \frac{d y}{d x}=\frac{b \pm \sqrt{b^{2}-a c}}{a}=\lambda^{ \pm}
$$

Hyperbolic PDES
Let, $b^{2}-a c>0$, then, we get two distinct families, of characteristic curves:

$$
\xi(x, y)=y-\lambda^{+} x=c_{1}, \eta(x, y)=y-\lambda^{-} x=c_{2}
$$

The reduced eq. would be: $\quad(B \neq 0)$

$$
\begin{equation*}
\omega_{\xi \eta}+F\left(\omega_{\xi,}, \omega_{n}, \omega, \xi, n\right)=0 \tag{1}
\end{equation*}
$$

This is the first Canonical form of hyperbolic eq n.
\# If $\alpha=\xi+\eta, \beta=\xi-\eta$, then, (1) becomes: $\omega_{\alpha \alpha}-\omega_{\beta \beta}+\cdots=0$, which is the second canonical form of the hyperbolic eqn..

TOEXM:

$$
\begin{gathered}
u_{t}-k^{2} u_{x x}=0 . \\
a=1, \quad \alpha=0, \quad c=-k^{2} \quad \\
b^{2}-a c=k^{2}>0 .
\end{gathered} \begin{aligned}
& a \alpha^{2}-2 b \alpha+c=0 \\
& \frac{d x}{d t} \frac{d x}{d x}= \pm k-k^{2}=0 \\
& \alpha= \pm k
\end{aligned}
$$

The en becomes:

$$
\begin{aligned}
& u_{\xi \eta}=0 \quad \Rightarrow \quad u_{\xi}=f(\eta) \\
& \therefore u=f(n)+g(\xi)
\end{aligned}
$$

$u(x, t)=f(x-c t)+g(x+c t), f \&$ gave arbitrary fr.
Parabolic PDEs

Let, $b^{2}-a c=0$. Then, one cherac. family of eqn. is:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{b}{a} \\
\Rightarrow & \xi(x, y)=a y-b x=c_{1}
\end{aligned}
$$

We have to choose $\eta(x, y)$ arbitrarily sit. ($\eta=x$ ar works)

$$
\frac{\partial(\xi, \eta)}{\partial(x, y)} \neq 0
$$

The reduced eqn. is:

$$
u_{n n}+\Phi\left(\xi, n, u, u_{\xi}, u_{n}\right)=0
$$

This is celled the canonical form of the parabolic PDF:

EXT:-

$$
x^{2} u_{x x}-2 x y u_{x y}+y^{2} u_{y y}+x u_{x}+y u_{y}=0
$$

$a=x^{2}, b=-x y, c=y^{2} ; \quad b^{2}-a c=0$. parabolic.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{b}{a}=-\frac{x y}{x^{2}}=-\frac{y}{x} \\
\Rightarrow \quad & \xi(x, y)=x y=c_{1}
\end{aligned}
$$

We take, $\eta(x, y)=x . \quad\left|\begin{array}{ll}\xi_{x} & \xi_{y} \\ \eta_{x} & \eta_{y}\end{array}\right|=\left|\begin{array}{ll}y & x \\ 1 & 0\end{array}\right|=-x$
The canonical form is:

$$
\eta^{2} u_{\eta n}+\eta u_{\eta}=0
$$

Elliptic PDEs

Let, $b^{2}-a c<0$. Then

$$
\frac{d y}{d x}=\frac{b \pm \sqrt{b^{2}-a c}}{a} \text { has no real }
$$

solutions, instead has two complex conjugate solutions. ξ and η.

Let, $\alpha=\frac{\xi+\eta}{2}, \quad \beta=\frac{\xi-\eta}{2 i}$ so that

$$
\xi=\alpha+i \beta, \eta=\alpha-i \beta .
$$

Then, the eqn reduces to:

$$
u_{\alpha \alpha}+u_{\beta \beta}+\phi\left(u_{\alpha}, u_{\beta}, u, \alpha, \beta\right)=0
$$

which is the canonical form of the elliptic PIEs.

ExM: $\quad u_{x x}+x^{2} u_{y y}=0$

$$
\begin{aligned}
& a=1, b=0, c=x^{2} \\
& \quad b^{2}-a c=-x^{2}<0 \quad \therefore \text { Elliptic. }
\end{aligned}
$$

We have,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{b \pm \sqrt{b^{2}-a c}}{a}= \pm i x \\
& \Rightarrow \quad \xi=y-i \frac{x^{2}}{2}=c_{1} \quad \eta=y+i \frac{x^{2}}{2}=c_{2}
\end{aligned}
$$

Take: $\alpha=y, \quad \beta=-\frac{x^{2}}{2} . \quad u_{x}=-u_{\beta}: x$

$$
\begin{gathered}
u_{y}=u_{\alpha} \\
u_{x x}=-u_{\beta}-x\left[u_{\alpha \beta} \cdot 0-u_{\beta \beta}{ }^{\frac{x^{2}}{}}\right. \\
u_{y y}=u_{\alpha \alpha}
\end{gathered}
$$

The canonical form is:

$$
\begin{aligned}
&-u_{\beta}+x^{2} u_{\beta \beta}+x^{2} u_{\alpha \alpha}=0 \\
& \Rightarrow \quad u_{\alpha \alpha}+u_{\beta \beta}=\frac{u_{\beta}}{x^{2}}=-\frac{u_{\beta}}{2 \beta} .
\end{aligned}
$$

ExT (Tricomi Eq)

$$
\begin{array}{r}
u_{y y}-y u_{x x}=0 \\
a=1, \quad b=0, \quad c=-y \\
b^{2}-a c=y
\end{array}
$$

On the x-axis $(y=0)$: parabolic for $y>0$, : Hyperbolic for $y<0$: Elliptic.

$$
\begin{aligned}
& \frac{d x}{d y}=\frac{b \pm \sqrt{b^{2}-a c}}{a}= \pm \sqrt{y} \\
& \therefore \quad \xi=3 x-2 y^{3 / 2}, \quad \eta=3 x+2 y^{3 / 2}
\end{aligned}
$$

The eqn reduce for $y>0$.

$$
u_{\xi \eta}-\frac{1}{6} \frac{u_{\xi}-u_{\eta}}{\xi-\eta}=0
$$

HeW

$$
u_{x x}+u_{x y}-2 u_{y y}+1=0 \quad \text { in } 0 \leq x \leq 1, y>0
$$

with $u=u_{y}=x$ on $y=0$

HeW

$$
\begin{aligned}
& u_{x x}-4 u_{x y}+4 u_{y y}=e^{y} \\
& a=1, \quad b=-2, \quad c=4, b^{2}-a c=4-4=0 \text { parabolic } \\
& \frac{d x}{d y}=+\frac{b}{a}=-2 \Rightarrow x+2 y=4=\xi \\
& \eta=x . \\
& \left|\begin{array}{ll}
\xi_{x} & \xi_{y} \\
\eta_{x} & n_{y}
\end{array}\right|=\left|\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right|=-2 \neq 0
\end{aligned}
$$

The eqn reduces to:

$$
u_{\eta \eta}=e^{\xi-\eta / 2}
$$

HeW

$$
\begin{array}{ll}
u_{x x}+\left(1+y^{2}\right) u_{y y}-2 y\left(1+y^{2}\right) u_{y}=0 \\
& \left(\omega_{\xi \xi}+\omega_{\eta n}-4 \tan \eta \cdot \omega_{\eta}=0\right) \\
\text { al Classification:- } & \xi=x, \eta=\tan ^{-1} y
\end{array}
$$

General Classification:-
A second order linear PDE in n variables is of the from:

$$
\sum_{i . J}^{n} a_{i j}(\bar{x}) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(\bar{x}) \frac{\partial u}{\partial x_{i}}+c(\bar{x}) u+d(\bar{x})=0
$$

$\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Let, $A=\left(a_{i,}\right)_{n \times n}$. We may take A to be symmetric as we can adjust

$$
a_{i j}=a_{j i}
$$

It is not usually possible to reduce the eqn to a Canonical form. For convenience, we take only en, with constant corf. Then, the reduction is possible.

$$
\text { ie. } \quad a_{i,}(\bar{x})=a_{i 5}
$$

and $b_{i}(\bar{x})=b_{i}, \quad c(\bar{x})=c, \quad d(\bar{x})=d$.
\Rightarrow Since A is symmetric, it is diagonalizable i.e. \exists an orthogonal matrix Q st.

$$
Q^{\top} A Q=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)
$$

If q_{i} is the ith column of Q, then the change of variable would be:

$$
\begin{aligned}
& \eta_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=q_{i}^{\top} \cdot \bar{x} \\
& \text { i.e. } \bar{\eta}=Q^{\top} \bar{x}
\end{aligned}
$$

W.R. To the new coordinates, the principal pout of the PDE takes the form:

$$
\sum_{i=1}^{n} \lambda_{i} \frac{\partial^{2} \omega}{\partial n_{i}^{2}}
$$

The 6.
The PDE is
a) elliptic if all the rigen-values of A are of same sign.

ExaM: $\quad u_{x x}+u_{y y}+u_{z z}=0$
b) parabolic if any of eigenvalues is zero, and others are of same sign.

EAM: $\quad u_{t}-\left(u_{x x}+u_{y y}+u_{z z}\right)=0$.
c) hyperbolic if all λ_{k} are non-zero and have. the same sign except for precisely one of them.

EXC:

$$
u_{t t}-c^{2}\left(u_{x x}+u_{y y}+u_{z z}\right)=0
$$

d) Ultra-hyperbolic if all λ_{k} are non-zero and

Very Rare in practice
H.W. $y u_{x x}-2 u_{x y}+x u_{y y}=0$. (parabolic: $x y=1$
elliptic: $x y>1$
hyperbolic: $x y<1$

ExaM: Classify: $\quad u_{x x}-u_{x y}+u_{y y}=f(x, y)$

$$
\begin{gathered}
A=\left(\begin{array}{cc}
1 & -1 / 2 \\
-1 / 2 & 1
\end{array}\right) \\
\lambda=\frac{1}{2}, \frac{3}{2}: \text { Elliptic. }
\end{gathered}
$$

