Hyperbolic PDES

Application: Vibrating string or Vibrating membrane (ID)
(Strauss for deduction)

$$
\text { (1) } .\left\{\begin{array}{l}
u_{H}-c^{2} u_{x x}=\left\{\begin{array}{l}
u(x, t) \text { Wave equating] } \\
u_{(x, 0)} f(x) \\
u_{t}(x, 0)=g(x)
\end{array}\right. \text {.W }
\end{array}\right.
$$

Since the operator $\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right)$ is linear, we may write

$$
\begin{aligned}
& \left\{\begin{array}{l}
v_{H}-c^{2} v_{x x}=0 \\
v(x, 0)=f(x) \\
v_{t}(x, 0)=g(x)
\end{array}\right. \\
& \left\{\begin{array}{l}
\omega_{t}-c^{2} \omega_{x x}=\phi(x, t) \\
\omega(x, 0)=0 \\
\omega_{t}(x, 0)=0
\end{array}\right.
\end{aligned}
$$

with $u(x, t)=v(x, t)+w(x, t)$.

We first solve:

$$
\left.\begin{array}{l}
v_{H}-c^{2} v_{x x}=0 \tag{11}\\
v(x, 0)=f(x) \\
v_{t}(x, 0)=g(x)
\end{array}\right\}
$$

$$
a=1, \quad b=0, \quad c=-c^{2} \Rightarrow \quad b^{2}-a c=c^{2}>0: \text { hyperbil }
$$

The char. eq be:

$$
\frac{d x}{d t}=\frac{b \pm \sqrt{b-a c}}{a}= \pm c \text {. }
$$

Char. curves:

$$
\xi(x, t)=x-c t, \quad \eta(x, t)=x+c t \text {. }
$$

By chain rule,

$$
\begin{aligned}
& v_{x}=v_{\xi} \xi_{x}+v_{\eta} \eta_{x}=v_{\xi}+v_{\eta} \\
& v_{t}=-c v_{\xi}+c v_{\eta} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
v_{t}-c^{2} v_{x x} & =\left(\psi_{t}-c v_{x}\right)(\nmid \\
& =\left(\partial_{t}-c \partial_{x}\right)\left(\partial_{t}+c \partial_{x}\right) v \\
& =\left(-2 c \partial_{\xi}\right)\left(2 c \partial_{n}\right) v=0
\end{aligned}
$$

As, $C \neq 0$, the eqn. (II) reduces to:

$$
\begin{aligned}
& v_{\xi \eta}=0 \\
\Rightarrow \quad & v_{\xi}=\tilde{F}^{*}(\xi) \\
\therefore & v=\int_{\xi_{0}}^{\xi} \tilde{F}(\xi) d \xi+G(\eta) \\
\therefore \quad & v(\xi, \eta)=F(\xi)+G(\eta), F \text { and } G \text { ane }
\end{aligned}
$$

arbitrary f_{n}. of single variable.
Therefore, the general sole is:

$$
v(x, t)=F(x-c t)+G(x+c t) .
$$

Now, $u \in C^{2}$, iff $F, G \in C^{2}$.
$F(x-c t)$ is a shape traveling to right at speed $c, G(x+c t)$ is traveling to left at speed e. These one traveling waves.

Any solution of the wave eq. is a superposition of forward and backward moving waves.

Now, IC: $\quad v(x, 0)=\oint(x), v_{t}(x, 0)=g(x)$.

So,

$$
\begin{gathered}
F(x)+G(x)=F(x) \quad \cdots(x) \\
\text { and }-F^{\prime}(x)+G^{\prime}(x)=\frac{1}{c} g(x) \cdots(x)
\end{gathered}
$$

Diff.($*$) w.r.to x,

$$
\begin{aligned}
F^{\prime}(x)+G^{\prime}(x) & =f^{\prime}(x) \\
-F^{\prime}(x)+G^{\prime}(x) & =\frac{1}{c} g(x)
\end{aligned}
$$

So,

$$
\begin{aligned}
G^{\prime}(x) & =\frac{1}{2} f^{\prime}(x)+\frac{1}{2 c} g(x) \\
\therefore G(x) & =\frac{f(x)}{2}+\frac{1}{2 c} \int_{0}^{x} g(s) d s+A
\end{aligned}
$$

\& $\quad F^{\prime}(x)=\frac{1}{2} f^{\prime}(x)-\frac{1}{2 e} \cdot g(x)$.

$$
\begin{array}{ll}
& \therefore F(x)=\frac{1}{2} f(x)-\frac{1}{2} \cdot \int_{0}^{x} g(s) d s+B \\
(*) \Rightarrow & F(x)+G(x)=f(x)
\end{array}
$$

So, $\quad A+B=0$.
Therfore, the sol, is:

$$
\begin{align*}
& v(x, t)= F(x-c t)+G(x+c t) \\
&= \frac{1}{2}[f(x-c t)+f(x+c t)]+\frac{1}{2 c}\left[\int_{0}^{x+c t} g(s) d s\right. \\
&+\int_{x-c t}^{0} g(s) d s \\
& v(x, t)= \frac{1}{2}\left(f(x+c t)+\frac{f}{f}(x-c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s \tag{k}
\end{align*}
$$

If, $f \in c^{2}, \quad g \in C^{1}, u \in c^{2}$.
The solution facula is due to d'Alembert.
\# $v(x, t)$ is determined uniquely by the values of f, g in $[x-t, x+t]]$. This interval represents the domain of dependence.

An initial condition ($f \circ r g^{\prime}$) at a point ($x_{0}, 0$) can affect the sol for $t>0$ in the region

$$
x_{0}-c t<x<x_{0}+c t
$$

This is called the domain of influence. of the pt. $\left(x_{0}, 0\right)$.
\Rightarrow If f and g vanish for: $|x|>R$ then $u(x, t)=0$ for $|x|>R+c t$

Theorem 7 Let, $f \in c^{2}(\mathbb{R}), g \in C^{\prime}(\mathbb{R})$. Then, the sob $v(x, t)$ in (*) is unique.
\Rightarrow We want to solve (III): non-homogeneous wave eq.

The Duhamel principle

$$
\left\{\begin{array}{l}
\omega_{H}-c^{2} \omega_{x x}=\phi(x, t) \tag{III}\\
\omega(x, 0)=0 \\
\omega_{t}(x, 0)=0
\end{array}\right.
$$

Analogus to Variation of parameter for ODEs. (See site)
(1) Let us consider the following Cauchy problems with parameter $\tau>0$. let, $v(x, t, \tau)$ satisfies the eq:

$$
(*) \ldots\left\{\begin{array}{l}
v_{t t}-c^{2} v_{x x}=0, x \in \mathbb{R}, t>\tau \\
v^{\prime}(x, \tau ; \tau)=0 \\
v_{t}(x, \tau ; \tau)=\phi(x, \tau)
\end{array}\right.
$$

Then, by d'Alembert, the roll of (*) is: $\left(f \in c^{\prime}\right)$

$$
v(x, t ; \tau)=\frac{1}{2 c} \int_{x-c(t-\tau)}^{x+c(t-\tau)} \phi(s, \tau) d s \cdot[\xi=t-\tau]
$$

Lemma 8 Let, f is a smooth fr e of x, t, τ and

$$
\begin{gathered}
F(x, t)=\int_{0}^{t} \phi(x, t ; \tau) d \tau . \quad \text { Then. } \\
\frac{\partial F}{\partial t}=f(x, t ; t)+\int_{0}^{t} f_{t}(x, t ; \tau) d \tau .
\end{gathered}
$$

Proof:

$$
\begin{aligned}
\frac{\partial F}{\partial t} & =\lim _{h \rightarrow 0} \frac{F(x, t+h)-F(x, t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\int_{0}^{t+h} \phi\left(x, t_{h}^{t} \tau\right) d \tau-\int_{0}^{t} \phi(x, t ; \tau) d \tau\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h} \int_{t}^{t+h} \phi(x, t+h ; \tau) d \tau \\
& \quad+\lim _{h \rightarrow 0} \int_{0}^{t} \frac{\phi(x, t+h ; \tau)-\phi(x, t ; \tau)}{h} d \tau \\
& =I_{1}+I_{2} .
\end{aligned}
$$

By Mean Value the of integral calculus,

$$
\int_{t}^{t+h} \phi(x, t+h ; \tau) d \tau=h \cdot \phi(x ; t+h ; t+\theta h), \quad \theta \in(0,1) .
$$

So, $\quad I_{1}=\lim _{h \rightarrow 0} f(x, t+h ; t+\theta h)=\phi(x, t, t), \quad f \in C^{\prime}$.
And $I_{2}=\int_{0}^{t} \phi_{t}(x ; t ; \tau) d \tau$ as $\phi \in C^{\prime}$.
Hence the result
(2) Theorem 9 (Duhamel Principle)

$$
u(x, t)=\int_{0}^{t} v(x, t ; \tau) d \tau, \quad t \geqslant 0 \quad \text { is the }
$$

Sols of (iii).
Proof:- $\Phi \in C^{\prime}, B$ so by d'Alembert $\omega \in C^{2}$.
\quad Now, $\quad \omega_{t}(x, t)=v(x, t ; t)+\int_{0}^{t} v_{t}(x, t ; \tau) d \tau$.

$$
=\int_{0}^{t} v_{t}(x, t ; \tau) d \tau
$$

$$
\begin{aligned}
w_{t t}(x, t) & =v_{t}(x, t ; t)+\int_{0}^{t} v_{t t}(x, t ; \tau) d \tau \\
& =\phi(x ; t)+\int_{0}^{t} v_{t t}(x, t ; \tau) d \tau
\end{aligned}
$$

Now, $c^{2} w_{x x}(x, t)=\int_{0}^{t} e^{2} v_{x x}(x, t ; \tau) d \tau,=\int_{0}^{t} v_{k t}(x, t ; \tau) d \tau$

Thess,

$$
\begin{array}{ll}
\text { Thus, } & \omega_{t t}-c^{2} \omega_{x x}=\phi(x, t) . \\
\text { Abs, } & \omega(x, 0)=0=\omega_{t}(x, 0)
\end{array}
$$

So, the complete some of

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=\phi(x, t) & , x \in \mathbb{R} \\ u(x, 0)=f(x) & \cdots \\ u_{t}(x, 0)=g(x) & \end{cases}
$$

is:.

$$
u(x, t)=\frac{f(x+c t)+f(x-c t)}{2}+\frac{1}{2 e} \int_{x-c t}^{x+c t} g(s) d s
$$

$$
+\frac{1}{2 e} \int_{0}^{t} \int_{x-c(t-\tau)}^{x+c(t-\tau)} \phi(s, \tau) d s d \tau
$$

Integrating $\$$ over the past history of the pto. (x, t) back to the initial time $t=0$.

Stability
Given $\epsilon>0, \exists \delta>0$ s.t. for every pair of data triples $\left(\phi_{1}, f_{1}, g_{1}\right)$ and $\left(\phi_{2}, f_{2}, g_{2}\right)$ satisfying

$$
\begin{aligned}
(\Phi & \in C(\mathbb{R} \times[0, \tau)), \phi_{x} \in C(\mathbb{R} x(0, T)), f \in C^{2}(\mathbb{R}) \\
& \left.g \in C^{\prime}(\mathbb{R})\right) \\
& \left|f_{1}(x)-f_{2}(x)\right|<\delta, \quad\left|g_{1}(x)-g_{2}(x)\right|<\delta \quad \forall x \in \mathbb{R}
\end{aligned}
$$

and $\quad\left|\phi_{1}(x, t)-\phi_{2}(x, t)\right|<\delta \quad \forall(x, t) \in \mathbb{R} \times[0, \tau]$. the robs $u_{1} \& u_{2}$ of (1) satisfy:

$$
\left|u_{1}(x, t)-u_{2}(x, t)\right|<\epsilon \quad \forall(x, t)
$$

Proof:-
By d'Alembert's formula,

$$
\begin{aligned}
\left(u_{1}-u_{2}\right)(x, t)= & \frac{\operatorname{cog}_{1}(x+c t)-\Phi_{e_{2}}(x+c t)}{2}+\frac{f_{1}(x-c t)-f_{2}(x-c t)}{2} \\
+ & \frac{1}{2 c} \int_{x-c t}^{x+c t}\left(g_{1}-g_{2}\right)(s) d s \\
& +\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-\tau)}^{x+c(t-\tau)}\left(f_{1}(s, \tau)-f_{2}(s, \tau)\right) d s d \tau
\end{aligned}
$$

So, $\quad\left|u_{1}-u_{2}\right| \leq \delta+\frac{1}{2 c}{ }^{2 c t} \delta+\frac{1}{24} \delta \phi t^{2}$.

$$
<\delta\left(1+T+T^{2}\right)<\epsilon
$$

with $\delta<\frac{\epsilon}{1+T+T^{2}}$.

Reflection of Waves:-
|A| Semi-infinite string with a fixed End:

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=0, \quad 0<x<\infty \\
u(x, 0)=f(x) \\
u_{t}(x, 0)=g(x) \\
u(0, t)=0 \quad \text { (Dirichlet } B C)
\end{array}\right.
$$

- Consider the odd extensions of f and g :

$$
\begin{aligned}
& \bar{f}(x)= \begin{cases}f(x), & x>0 \\
-f(-x), & x<0\end{cases} \\
& \bar{g}(x)= \begin{cases}g(x), & x>0 \\
-g(-x), & x<0 .\end{cases}
\end{aligned}
$$

The in,

$$
\left\{\begin{array}{l}
\bar{u}_{H}-c^{2} \bar{u}_{x x}=0, \quad-\infty<x<\infty \\
\bar{u}(x, 0)=\bar{f}(x) \\
\bar{u}_{t}(x, 0)=\bar{g}(x)
\end{array}\right.
$$

As \bar{f} \& \bar{g} are odd $f \frac{\bar{x}, \bar{u}}{}$ is odd. and $\bar{u}(-x, t)=-\bar{u}(x, t)$, so that

$$
\begin{gathered}
\bar{u}(0, t)=0 \\
\bar{u}(x, t)=\frac{\bar{f}(x+c t)+\bar{f}(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} \bar{g}(s) d s
\end{gathered}
$$

For $x \geqslant c t$.

$$
\begin{aligned}
& x \geqslant c t . \\
& u(x, t)=\frac{1}{2}[f(x+c t)+f(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s .
\end{aligned}
$$

for $x<c t$,

$$
\begin{aligned}
\text { <ct, } & =\frac{f(x+c t)-f(c t-x)}{2}+\frac{1}{2 c}\left[\int_{x-c t}^{0}-g(-s) d s+\int_{0}^{x+c t} g(s) d s\right. \\
& =\frac{f(x+c t)-f(c t-x)}{2}+\frac{1}{2 c} \int_{c t-x}^{x+c t} g(s) d s .
\end{aligned}
$$

B Semi-infinite string with a free end:-

$$
\left\{\begin{array}{l}
u_{t}-e^{2} u_{x x}=0, \quad 0<x<\infty \\
u(x, 0)=f(x) \\
u_{t}^{\prime}(x, 0)=g(x) \\
u_{x}(0, t)=0 \quad(\text { Newman } B C)
\end{array}\right.
$$

Consider the even extensions. of f and g :

$$
\bar{f}(x)=\left\{\begin{array}{l}
f(x), x \geqslant 0 \\
f(-x), x<0
\end{array} \quad \text { and } \bar{g} .\right.
$$

Then, $\quad\left\{\begin{array}{l}\bar{u}_{t t}-c^{2} \bar{u}_{x x}=0 \quad-\infty<x<\infty \\ \bar{u}(x, 0)=\bar{f}(x) \\ \bar{u}_{t}(x, 0)=\bar{g}(x) .\end{array}\right.$
As. \bar{f} and \bar{g} are 'even, \bar{u} is even
$\bar{U}(-x, t)=\bar{u}(x, t)$ so that

$$
\begin{aligned}
& \bar{u}_{x}(0, t)=0 \\
& \bar{u}(x, t)=\frac{\bar{f}(x+c t)+\bar{f}(x-c t)}{2}+\frac{i}{2 c} \int_{x-c t}^{x+c t} \bar{g}(s) d s
\end{aligned}
$$

For $x \geqslant c t$.

$$
u(x, t)=\frac{f(x+c t)+f(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
$$

for $x<c t$

$$
\begin{aligned}
u(x, t)=\frac{f(x+c t)+f(c t-x)}{2} & +\frac{1}{2 c}\left\{\int_{0}^{c t-x} g(s) d s\right. \\
& \left.+\int_{0}^{x+c t} g(s) d s\right\}
\end{aligned}
$$

(C) Bounded String:-

$$
\text { (*)..\{ }\left\{\begin{array}{cc}
u_{t t}-c^{2} u_{x x}=0 & 0<\dot{x}<l \\
u(x, 0)=f(x) & \\
u_{t}(x, 0)=g(x) & \\
u(0, t)=0=u(l, t), t \geqslant 0
\end{array}\right.
$$

Method 1 (by reflection) (Strauss)
We extend f and $g \mathbb{R}$ such that both f and g are odd w.r. to " $x=0$ and $x=l$.

$$
\bar{f}(x)=\left\{\begin{array}{l}
f(x)^{-2 n l} l,, 2 n l<x<(2 n+1) l \\
-f(2 n l), \\
\\
-f(2 n-1) l<x) l<2 n l,
\end{array}, n=0 ; 11,22, \ldots\right.
$$

$11 . l y$ for \bar{g}.

\bar{f} and \bar{g} are of period $2 l$. i.e.

$$
\bar{f}(x+2 l)=\bar{f}(x), \bar{g}(x+2 l)=\overline{5}(x) . \quad \forall x .
$$

Then, $\left\{\begin{array}{l}\bar{u}_{t t}-c^{2} u_{x x}=0 \quad-\infty<x<\infty \\ \bar{u}(x, 0)=\bar{f}(x) \\ \bar{u}_{t}(x, 0)=\bar{g}(x)\end{array}\right.$
and $\left.\bar{u}\right|_{(0, \ell)}=u$.

$$
\bar{u}(x, t)=\frac{\bar{f}(x+c t)+\bar{f}(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} \bar{g}(s) d s . \quad x \in \mathbb{R} .
$$

$-2 l<x-c t<-l$, $3 l<x+c t<4 l$

$$
u(x, t)=\frac{f(x-c t+2 l)-f(4 l-x-c t)}{2}+\frac{1}{2 c} \int_{x-c t+2 l}^{4 l-x-c t} g(s) d s
$$

Method 2 (Sepention of variable / Fourier Method)

Let, $u(x, t)=F(x) G(t) . \quad x \in(0, l), t \geqslant 0$

$$
\begin{aligned}
u(0, t)=0= & u(l, t) \Rightarrow \\
& F(0) G(t)=0=F(l) G(t) \\
\Rightarrow & F(0)=0=F(l) \ldots(11)
\end{aligned}
$$

From the eq:

$$
\begin{aligned}
& F(x) G^{\prime \prime}(t)
\end{aligned}=c^{2} F^{\prime \prime}(x) G(t) . ~=\frac{F^{\prime \prime}(x)}{F}=\frac{G^{\prime \prime}(t)}{c^{2} G(x)}=-\lambda \text {, say. } .
$$

because, each group is a fry of x / t only.
[At the end, we will show $\lambda>0$].
So, $\left.\begin{array}{l}\quad F^{\prime \prime}+\lambda F=0 \\ F(0)=F(l)=0\end{array}\right\}$ and $G^{\prime \prime}+\lambda c^{2} G=0$
There are sturm-Liouville problems. The values of λ for which it has non-trinial som, che called eigenvalues, and corresponding sole, are called eigenfus.

Case -I $\lambda=-\mu^{2} 0<0$. The gen. sole. of

$$
\begin{gathered}
F^{\prime \prime}-\mu^{2} F=0 \text { is } \\
F(x)=A e^{\mu x}+B e^{-\mu x}
\end{gathered}
$$

Now, $\quad F(0)=0=F(l) \Rightarrow A=0=B$.
So, there one no-nontrivial som in this case.
Cone -II $\quad \lambda=0$: No nontrivial sol .m.
case-III $\quad \lambda=\mu^{2}>0$. The general sol. is:

$$
\begin{aligned}
F(x) & =A \sin \mu x+B \cos \mu x \\
F(0)=0 \quad & B=0 \\
F(l)=0 \Rightarrow & \Rightarrow \sin (\mu l)=0 \\
& \Rightarrow \sin (\mu l)=0, A \neq 0
\end{aligned}
$$

So, $\quad h_{n}=\frac{n \pi}{l}, n=1,2, \ldots$
So, the eigenvalues are:

$$
\lambda_{n}=\mu_{n}^{2}=\left(\frac{n \pi}{l}\right)^{2}, \quad n=1,2 \ldots
$$

and the rigen-fres are:

$$
F_{n}(x)=\sin \left(\frac{n \pi x}{l^{\prime}}\right), \quad n=1,2 \ldots
$$

Solving the other eq:

$$
G_{n}(t)=K_{n} \sin \left(\frac{c n \pi t}{l}\right)+D_{n} \cos \left(\frac{c n \pi t}{l}\right)
$$

Therefore, there are an infinite no of separates som. of (*). So the rom is:

$$
u(x, t)=\sum_{n=1}^{\infty}\left\{k_{n} \sin \left(\frac{c n \pi t}{l}\right)+D_{n} \cos \left(\frac{c n \pi t}{l}\right)\right\} \sin \left(\frac{n \pi x}{l}\right.
$$

provided it converges. K_{n} " and " D_{n} one chooses such that the ICs are satisfied. (Superposition principle).

Now, $\quad u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x)$.

So,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} D_{n} \sin \left(\frac{n \pi x}{l}\right)=f(x) \\
& \sum_{n=1}^{\infty} \frac{\pi n c}{l} k_{n} \sin \left(\frac{n \pi x}{l}\right)=S(x)
\end{aligned}
$$

The eq will be satisfied if $f(x) \& g(x)$ are represent by Fourier sine series.

$$
\begin{array}{ll}
\therefore \quad D_{n} & =\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi x}{l}\right) d x . \\
\text { and } \quad k_{n} & =\frac{2}{l} \cdot \frac{l}{n \pi e} \int_{0}^{l} g(x) \sin \left(\frac{n \pi x}{l}\right) d x .
\end{array}
$$

Solve:

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=\phi(x, t), \quad 0<x<l, \quad t \geq 0 \\
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x) \\
u(0, t)=p(t), \quad u(l, t)=q(t)
\end{array}\right.
$$

Let, $U(x, t)=\frac{1}{l}[(l-x) p(t)+x q(t)]$
and $v(x, t) \pm(u-U)(x, t)$.

Then,

$$
\begin{aligned}
v_{t t}-c^{2} v_{x x} & =\Phi(x, t)-\frac{1}{l}\left[(l-x) p^{\prime \prime}(t)+x q^{\prime \prime}(t)\right] \\
& =F(x, t) \ldots \text { say } .
\end{aligned}
$$

$$
\begin{aligned}
& V(x, 0)=f(x)-U(x, 0)=\psi(x) \\
& v_{t}(x, 0)=g(x)-U_{t}(x, 0)=G(x) . \\
& V(0, t)=p(t)-p(t)=0, \quad V(l, t)=0 .
\end{aligned}
$$

So, enough to solve:

$$
\left\{\begin{array}{l}
v_{H}-c^{2} v_{x x}=F(x, t) \quad, \quad \ll x<l \\
v^{2}(x, 0)=\psi(x), v_{t}(x, 0)=G(x) \\
v(0, t)=0, \quad v(l, t)=0
\end{array}\right.
$$

Solve it by Duhamel.

Energy:-

$$
R=\{(x, t): \quad 0<x<l, \quad 0<t<\infty\} \text {. Let, } u \in C^{2}(R)
$$

is a sol of

$$
\left\{\begin{array}{c}
u_{H t}-c^{2} u_{x x}=0 \\
u(x, 0)=f(x), u_{t}(x, 0)=g(x) \\
u(0, t)=0=u(l, t)
\end{array}\right.
$$

$K E(t)=\frac{1}{2} \int_{0}^{l} u_{t}^{2}(x, t) d x$ is called the kinetic energy.
$P E(t)=\frac{1}{2} \int_{0}^{l} e^{2} u_{x}^{2}(x, t) d x$ is called the potential "

$$
E(t)=K E(t)+P E(t)=\frac{1}{2} \int_{0}^{l}\left(u_{t}^{2}+u c^{2} u_{x}^{2}\right) d x \text { is called }
$$

the total energy of the system at time t.

Theorem II. If $u \in c^{2}(R)$ is a som, then, $E(t)$ is constant, $E(t)=E(0)$.

$$
\begin{aligned}
\frac{d E}{d t} & =\frac{d}{d t} \frac{1}{2} \int_{0}^{l}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x \\
& =\frac{1}{2} \int_{0}^{l}\left(2 u_{t} u_{t t}+2 c^{2} u_{x} u_{x t}\right) d x \\
& =\int_{0}^{l} u_{t} u_{t t} d x+c^{2} \int_{0}^{l} u_{x} u_{x t} d x \\
& =\int_{0}^{l} u_{t} u_{t t} d x+c^{2}\left[u_{x} u_{t}\right]_{0}^{l}-c^{2} \int_{0}^{l} u_{x x} u_{t} d x \\
& =\int_{0}^{l} u_{t}\left(u_{t t}-c^{2} u_{x x}\right) d x=0
\end{aligned}
$$

So, $\quad E(t)=K=E(0)$.

Thy 12
The smooth som. of

$$
(\$) \cdots\left\{\begin{array}{l}
u_{H}-c^{2} u_{x x}=\phi(x, t), \quad 0<x<l \\
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x) \\
u(0, t)=h(t), u(l, t)=\psi(t)
\end{array}\right.
$$

is unique.

Proof: If possible let, $u_{1} \& u_{2}$ satisfy (s).
Then, $v=u_{1}-u_{2}$ 'satisfies

$$
\left\{\begin{array}{c}
v_{t}-c^{2} v_{x x}=0 \\
v(x, 0)=0=v_{t}(k, 0) \\
v_{0}(0, t)=0=v(l, t)
\end{array}\right.
$$

If $E(t)=\frac{1}{2} \int_{0}^{l}\left(u_{t}^{2}+c^{2} v_{x}^{2}\right) d x$, then $E(t)=E(0)$
But, $\quad E(0)=\left.\frac{1}{2} \int_{0}^{1}\left(v_{t}^{2}+c^{2} v_{x}^{2}\right)\right|_{t=0}=0$.
So, $\quad \frac{1}{2} \int_{0}^{l}\left(v_{t}^{2}+c^{2} v_{x}^{2}\right) d x=0 \quad \forall \quad t>0$
i.e. $v_{t}(x, t)=0=v_{x}(x, t)$.

So, $v(x, t)=$ constant. But, $v(x, 0)=0$.
So, $v(x, t)=0 \Rightarrow u_{1}=u_{2}$. The som is unique
H.W

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}+u_{t}=0, \quad 0<x<l, t>0 \\
u(x, 0)=\phi(x), u_{t}(x, 0)=\psi(x) \\
u(0, t)=0=u(l, t)
\end{array}\right.
$$

Prove that the energy f_{n} is a decreasing f_{n}

