Heat Equation:-
BCM PDEs

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=f(x, t), \quad x \in \mathbb{R}, t>0  \tag{1}\\
u(x, 0)=\phi(x) .
\end{array}\right.
$$

$k$ : heat conductivity.
In $\mathbb{R}^{n}$ :

$$
\left\{\begin{array}{l}
u_{t}-k \Delta u=f(x, t) \text { in } \mathbb{R}^{n}, t>0 \\
u(\underline{x}, 0)=\phi(\underline{x}) \underline{x} \in \mathbb{R}^{n} . \\
|u|<\infty
\end{array}\right.
$$

Fundamental Solution:-

The eq.

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=0, x \in \mathbb{R}, t>0 \\
u(x, 0)=\phi(x)
\end{array}, \ldots(11)\right.
$$

Satisfies the following invariance properties:
a) if $u(x, t)$ is a solo, $u(x-y, t)$ is abs a sole. for a fixed $y$.
b) Any derivative $\left(u_{x}, u_{t}, u_{x x} \ldots\right)$ of a sole is again a som.
c) A linear combination of sols is again a so lm.
d) $A_{n}$ integrand of som is again a sorn. If $u(x, t)$ is a sol, so is $u(x-y, t)$ and so is

$$
v(x, t)=\int_{-\infty}^{\infty} u(x-y, t) g(y) d y .
$$

for any $f_{n} g(y)$. (Assume convergence)
e) $\quad v(x, t)=u(\sqrt{a} x, a t), a>0$ is abr a sols.

$$
\begin{aligned}
v_{t} & =a u_{t}(\sqrt{a} x, a t) \\
v_{x} & =\sqrt{a} u_{x}(\sqrt{a} x, a t) \\
v_{x x} & =a u_{x x}(\sqrt{a} x, a t) \\
\Rightarrow v_{t} & =k v_{x x}=0 .
\end{aligned}
$$

Let, $z=\sqrt{a} x, \tau=a t, a>0$.
$\frac{z^{2}}{k \tau}=\frac{x^{2}}{k t}$. and the heat eq is invariant under $(x, t) \rightarrow(z, \tau)$.

Let. us look for a som of heat eqn having the form

Substituting this expression in the eqn, we get:

$$
\begin{aligned}
& Q_{t}=\omega^{\prime}\left(\frac{x}{\sqrt{4 k t}}\right) \cdot \frac{x}{\sqrt{4 k}} \cdot\left(-\frac{1}{2}\right) t^{-3 / 2} \\
& Q_{x x}=\omega^{\prime \prime}\left(\frac{x}{\sqrt{4 k t}}\right) \frac{1}{4 k t}
\end{aligned}
$$

Let, $p=\frac{x}{\sqrt{4 k t}}$ and $Q_{t}-k Q_{x x}=0 \Rightarrow$

$$
\frac{1}{\sqrt{4 k t}}\left(\frac{1 x}{2 t} \omega^{\prime}+\omega^{\prime \prime} \frac{k}{\sqrt{4 k t}}\right)=0
$$

$$
\begin{gathered}
\Rightarrow \quad \omega^{\prime \prime}+\frac{x}{\sqrt{k t}} \omega^{\prime}=0 \\
\therefore \quad \omega^{\prime \prime}+2 p \omega^{\prime}=0
\end{gathered}
$$

Hence, $\quad \omega^{\prime}(p)=k_{1} e^{-p^{2}}$

$$
\begin{aligned}
\therefore \omega(p) & =k_{1} \int_{0}^{p} e^{-s^{2}} d s+k_{2} \\
\therefore Q(x, t) & =k_{1} \int_{0}^{x / \sqrt{4 k t}} e^{-s^{2}} d s+k_{2}
\end{aligned}
$$

We choose an initial condo!

$$
Q(x, 0)= \begin{cases}1, & x>0 \\ 0, & 0 x<0 .\end{cases}
$$

then,

$$
Q(x, 0)=\lim _{t \rightarrow 0^{+}} Q(x, t)= \begin{cases}k_{1} \frac{\sqrt{\pi}}{2}+k_{2}, & x>0 \\ -k_{1} \frac{\sqrt{\pi}}{2}+k_{2}, & x<0\end{cases}
$$

$$
\therefore \quad k_{2}=1 / 2, \quad k_{1}=1 / \sqrt{\pi} .
$$

So, $\quad Q(x, t)=\frac{1}{2}+\frac{1}{\sqrt{\pi}} \int_{0}^{x / \sqrt{4 k t}} e^{-s^{2}} d s$

By (b), $\quad Q_{x}(x, t)$ is ard a sole., let, $K(x, t)=Q_{x}(x, t)$.

$$
\text { ie. } \quad \mathbb{k}(x, t)=\frac{1}{\sqrt{4 \pi k t}} e^{-\frac{x^{2}}{4 k t}}, \quad t>0
$$

By (d), for any $\phi(x)$,

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \phi(y) d y
$$

is ado a solus. of (II). (Poisson Formula)

Property:

$$
\int_{-\infty}^{\infty} k(x, t) d x=1 \quad(\text { for each } t>0)
$$

This $K(x, t)$ is called the fundamental som or the diffusion kernel..


Theorem:-
Let, $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a cont. \& bounded $f_{n}$ and $u(x, t)=(K * \phi)(x, t)$.

Then,

1) $\quad u \in C^{\infty}(\mathbb{R} \times(0, \infty))$
ii) $u$ solves $u_{t}-k u_{x x}=0, t>0$

Proof:- (III). $\phi$ is cont. For $\in>0$, choose $\delta>0$ st.

$$
\left|\phi(y)-\phi\left(x_{0}\right)\right|<\frac{\epsilon}{2} . \quad \begin{gathered}
\text { whenever } \\
y \in B_{\delta}\left(x_{0}\right)
\end{gathered}
$$

If $x \in B_{8 / 2}\left(x_{0}\right)$, then.

$$
\begin{aligned}
&\left|u(x, t)-\phi\left(x_{0}\right)\right|=\left|\int_{\mathbb{R}} K(x-y, t) \phi(y) d y-\int_{\mathbb{R}} K\left(x_{0}-y, t\right) \phi\left(x_{0}\right) d y\right| \\
&=\left|\int_{\mathbb{R}} K(x-y, t)\left(\phi(y)-\phi\left(x_{0}\right)\right) d y\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \int_{B_{\delta}\left(x_{0}\right)} K(x-y, t)\left|\phi(y)-\phi\left(x_{0}\right)\right| d y \\
& +\int_{\left|y-x_{0}\right| \geqslant \delta} K\left(x_{0} y, t\right)\left|\phi(y)-\phi\left(x_{0}\right)\right| d y \\
& \leqslant \\
& J=\frac{\epsilon}{2}+\int_{\left|y-x_{0}\right| \geqslant \delta} K(x-y, t)\left|\phi(y)-\phi\left(x_{0}\right)\right| d y \\
& \left|y-x_{0}\right| \leqslant \\
& |y-x|+\left|x-x_{0}\right| \leq|y-x|+\delta / 2 \\
& \Rightarrow \\
& \Rightarrow
\end{aligned}
$$

Now,

$$
\begin{aligned}
& J \leqslant \frac{2\|\phi\|_{\infty}}{\sqrt{4 \pi k t}} \int_{\left|y-x_{0}\right| \geq \delta} \cdot e^{=\frac{(x-y)^{2}}{4 k t}} d y \\
& \leqslant \frac{c}{\sqrt{t}} \int_{\left|y-x_{0}\right| \geqslant \delta} e^{-\frac{\left(y-x_{0}\right)^{2}}{16 t t}} d y \\
& =c_{1} \int_{\delta / \sqrt{16 k t}}^{\infty} e^{-s^{2}} d s \\
& \begin{array}{l}
\frac{\left(y-x_{0}\right)}{\sqrt{16 K t}}=s \\
\frac{d y}{\sqrt{16 K_{t}}}=d s
\end{array} \\
& \rightarrow 0 \text { as } t \rightarrow 0+\text {. }
\end{aligned}
$$

So, for sulficienty small $t, \quad J<\in / 2$.

$$
\text { ie. }\left|u(x, t)-\phi\left(x_{0}\right)\right|<\epsilon \text {. }
$$

The Duhamel principle:-
(1) $\ldots\left\{\begin{array}{l}u_{t}-k u_{x x}=f(x, t), x \in \mathbb{R}, t>0 \\ u(x, 0)=\phi(x)\end{array}\right.$

Consider
(ii)... $\left\{\begin{array}{ll}v_{t}-k v_{x x}=0 \\ v(x, 0)=\phi(x)\end{array} \quad x \in \mathbb{R}, t>0\right.$
and $\left\{\begin{array}{l}\omega_{t}-k \omega_{x x}=f(x, t), x \in \mathbb{R}, t>0 \\ \omega(x, 0)=0\end{array}\right.$
then, $u=v+w$ solves (1). and.

$$
v(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \phi(y) d y
$$

Need to solve (III).
Consider $v(x, t ; \tau)$ that satisfeys.

$$
\left\{\begin{array}{l}
v_{t}-k v_{x x}=0, \quad x \in \mathbb{R}, \quad t>\tau \\
v(x, \tau ; \tau)=f(x, \tau)
\end{array}\right.
$$

for each $\tau \in(0, \infty)$.
If $\bar{v}(x, t-\tau)=v(x, t ; \tau)$, then,

$$
\left\{\begin{array}{l}
\bar{v}_{s}-k \bar{v}_{x x}=0, \quad \text { s>0, } x \in \mathbb{R} . \\
\bar{v}(x, 0)=f(x, \bar{c})
\end{array}\right.
$$

So, $\bar{v}(x, s)=v(x, t ; \tau)$

$$
=\frac{1}{\sqrt{4 \pi k(t-\tau)}} \int_{-\infty}^{\infty} e^{-\frac{(x-4)^{2}}{4 k(t-\tau)}} f(y, \tau) d y
$$

Theorem:-

$$
\begin{equation*}
\omega(x, t)=\int_{0}^{t} v(x, t ; \tau) d \tau \quad \text { solves } \tag{iii}
\end{equation*}
$$

Proof is similar to wave eq..

So, the complete sols. for (1) is:

$$
\begin{aligned}
u(x, t)= & \frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \phi(y) d y \\
& +\int_{0}^{t} \frac{1}{\sqrt{4 \pi(t-\tau)}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k(t-\tau)}} f(y ; \tau) d y d \tau .
\end{aligned}
$$

Half line:-
Dirichlet problem

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=f(x, t), \quad 0<x<\infty, t>0 \\
u(x, 0)=\phi(x) \\
u(0, t)=g(t)
\end{array}\right.
$$

Let, $U(x, t)=u(x, t)-g(t)$ then, $U$ satisfies:

$$
\left\{\begin{array}{l}
U_{t}-k U_{x x}=f(x, t)-g^{\prime}(t) \\
U(x, 0)=\phi(x)-g(0) \\
U(0, t)=0
\end{array}\right.
$$

Now use odd extension as in wave en.

Newman problem:-

$$
\left\{\begin{array}{l}
\omega_{t}-k \omega_{x x}=f(x, t), 0<x<\infty, t_{\rangle_{0}} \\
\omega(x, 0)=\phi(x) \\
\omega_{x}(0, t)=h(t)
\end{array}\right.
$$

Let, $W(x, t)=W(x, t)-x h(t)$, then, $W$ satisfiry

$$
\left\{\begin{array}{l}
w_{t}-k w_{x x}=f(x, t)-x h^{\prime}(t) \\
w(x, 0)=\Delta(x)-x h(0) \\
w_{x}(0, t)=0
\end{array}\right.
$$

Use even extension as in the wave eqn.

Heat Conduction on finite Rod:-

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=0, \quad 0<x<l, t>0 \\
u(x, 0)=\phi(x) \\
u(0, t)=0=u(l, t)
\end{array}\right.
$$

Homogeneous PDE, BCs. $\Rightarrow$ Seperation of 'Variable.
Assume

$$
u(x, t)=F(x) G(t) .
$$

then,

$$
\begin{aligned}
& F G^{\prime}-k F^{\prime \prime} \cdot G=0 \\
\Rightarrow \quad & \frac{G^{\prime}}{k G}=\frac{F^{\prime \prime}}{F}=-\mu^{2}=\lambda, \quad \mu>0
\end{aligned}
$$

with $F(0)=0=F\left(l_{1}\right)$. The only non-trivial sole.
occurs when, $\lambda=-\mu^{2}$.
Now, the eigen-value problem:

$$
\left\{\begin{array}{l}
F^{\prime \prime}+\mu^{2} F=0 \\
F(0)=F(l)=0
\end{array}\right.
$$

has sols:

$$
\begin{aligned}
& F(x)=A \cos (\mu x)+B \sin (\mu x) \\
& F(0)=0 \Rightarrow A=0 \\
& F(l)=0 \therefore \Rightarrow B \sin (\mu l)=0 \\
& B \neq 0: \sin (\mu l)=0 \\
& \therefore \mu l=n \pi \\
& \therefore \mu_{n}=\frac{n \pi}{l}, n=1,2, \ldots
\end{aligned}
$$

These are the eigen-values. and the eigen-fos are:

$$
F_{n}(x)=B_{n} \sin \left(\frac{n \pi x}{\ell}\right), n=1,2, \ldots
$$

Also,

$$
\begin{aligned}
G^{\prime}+\mu^{2} k G & =0 \\
\therefore \quad G_{n}(t) & =c_{n} e^{-\mu_{n}^{2} k t}, \quad n=1,2, \ldots \\
& =c_{n} e^{-\left(\frac{n \pi}{k}\right)^{2} k t}
\end{aligned}
$$

Hence, the non-trivial som of the heat eq which satisfies the two $B C_{s}$. is:

$$
\begin{aligned}
u_{n}(x, t) & =F_{n}(x) G_{n}(t) \\
& =a_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \sin \left(\frac{n \pi x}{l}\right), n=1,2, \ldots
\end{aligned}
$$

By superposition principle, the series sol. is:

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \sin \left(\frac{n \pi x}{l}\right) .
$$

and it should satisfy the IC: $u(x, 0)=\phi(x)$.
So, $\phi(x)$ is represented by a Fourier Sine-Sesies with coset.

$$
a_{n}=\frac{2}{l} \int_{0}^{l} \Phi(x) \sin \left(\frac{n \pi x}{l}\right) d x
$$

H.W:-

Let, $\phi(x)=x(l-x)$
then, write the som.

$$
\begin{aligned}
& a_{n}=\frac{8 l^{2}}{n^{3} \pi^{3}} \quad n=1,3,5, \ldots \\
\therefore & u(x, t)=\frac{8 l^{2}}{\pi^{3}} \sum_{n=1,3,5}^{\infty} \frac{1}{n^{3}} e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \sin \left(\frac{n \pi x}{l}\right)
\end{aligned}
$$

H.W: Instead of Dirichlet BEs, we have neumann BC.

$$
u_{x}(0, t)=0=u_{x}(l, t)
$$

$$
\begin{aligned}
& \mu_{n}=\left(\frac{n \pi}{l}\right)^{2}, n=0,1 \ldots \\
& u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \cos \left(\frac{n \pi x}{l}\right) .
\end{aligned}
$$

with $\phi(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{l}\right)$ : Fourier cosine Series

$$
a_{n}=\frac{2}{l} \int_{0}^{l} \phi(x) \cos \left(\frac{n \pi x}{l}\right) d x
$$

(check)

Uniqueness by Energy Method:-

$$
(*) \cdots\left\{\begin{array}{l}
u_{t}-k u_{x x}=f(x, t), \quad 0<x<l, t>0 \\
u(x, 0)=\phi(x) \\
u(0, t)=g_{1}(t), u(l, t)=g_{2}(t)
\end{array}\right.
$$

Deft:- The energy integral is given by:

$$
E(t)=\frac{1}{2 k} \int_{0}^{l} u^{2} d x
$$

Thy 13. Let, $u \in C^{\prime}$ be a sols of (*). The sols is unique.
Proof: - If possible, let, $u_{1}(x, t)$ and $u_{2}(x, t)$ are two som of (*).

$$
\text { let, } v(x, t)=\left(u_{1}-u_{2}\right)(x, t) \text {. }
$$

Then, $\quad\left\{\begin{array}{l}v_{t}-k v_{x x}=0,0 .<x<l, t>0 \\ v(x, 0)=0\end{array}\right.$

$$
\begin{aligned}
\frac{d E}{d t} & =\frac{d}{d t}\left\{\frac{1}{2 k} \int_{0}^{l} v^{2}(x, t) d x\right\} \\
& =\frac{1}{k} \int_{0}^{l} v v_{t} d x \\
& =\int_{0}^{l} v v_{x x} d x \\
& =\left[v v_{x}\right]_{0}^{l}-\int_{0}^{l} v_{x}^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\left[v v_{x}\right]_{0}^{1}-\int_{0} v_{x} v(0, t) v_{x}(0, t)-\int_{0}^{l} v_{x}^{2} d x \\
& =v(l, t) v_{x}^{\prime}(l, t)-v(l
\end{aligned}
$$

$$
=-\int_{0}^{l} \cdot v_{x}^{2} d x \leq 0
$$

Also, $E(0)=\frac{1}{2 k} \int_{0}^{l} v^{2}(x, 0) d x=0$.
So, $E(t)$ is a decreasing $f r$ and $E(t) \leqslant E(0)=0$
By. Refry, $E(t) \geqslant 0 \quad \forall t$
Hence, $\quad E(t)=0 \Rightarrow V(x, t)=0 . \quad \forall(x, t)$
So, $u_{1}=u_{2}$ and the so ln is unique.

Inhomogeneous en:-

$$
(1) \cdots\left\{\begin{array}{l}
u_{t}-k u_{x x}=f(x, t), \quad 0<x<l, t>0 \\
u(x, 0)=\phi(x) \\
u(0, t)=0=u(l, t)
\end{array}\right.
$$

Suppose a sots of (1) looks like:

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n}(t) e^{-\left(\frac{n \pi}{x}\right)^{2} k t} \sin \left(\frac{n \pi x}{l}\right)
$$

Substituting in (1), we get:

$$
\sum_{n=1}^{\infty} A_{n}^{\prime}(t) e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \sin \left(\frac{n \pi x}{l}\right)=\sum_{n=1}^{\infty} f_{n}(t) \sin \left(\frac{n \pi x}{l}\right)
$$

where $f(x, t)=\sum_{n=1}^{\infty} f_{n}(t) \sin \left(\frac{n \pi x}{l}\right)$.

$$
\& f_{n}(t)=\frac{2}{l} \int_{0}^{l} f(x, t) \sin \left(\frac{n \pi x}{l}\right) d x \text {. }
$$

Equating the co-eff. We Jet:

$$
\left.\begin{array}{rl} 
& A_{n}^{\prime}(t) \\
=f_{n}(t) \cdot e^{\left(\frac{n \pi}{x}\right)^{2} k t} \\
\therefore \quad & A_{n}(t)
\end{array}\right)=A_{n}(0)+\int_{0}^{t} e^{\left(\frac{n \pi}{2}\right)^{2} k s} f_{n}(s) d s
$$

$$
\begin{aligned}
& \phi(x)=u(x, 0)=\sum_{n=1}^{\infty} A_{n}(0) \sin \left(\frac{n \pi x}{l}\right) \\
& \therefore \quad A_{n}(0)=\frac{2}{l} \int_{0}^{l} \phi(x) \sin \left(\frac{n \pi x}{l}\right) d x .
\end{aligned}
$$

Therefore the sole of (1) is:

$$
u(x, t)=\sum_{n=1}^{\infty}\left(a_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t}+\int_{0}^{t} e^{\left(\frac{n \pi}{l}\right)^{2} k(s-t)} f_{n}(s) d s\right) \sin \left(\frac{n \pi x}{l}\right)
$$

where

$$
\begin{aligned}
& f_{n}(s)=\frac{2}{l} \int_{0}^{l} f(x, s) \sin \left(\frac{n \pi x}{l}\right) d x \\
& a_{n}=\frac{2}{l} \int_{0}^{l} \phi(x) \sin \left(\frac{n \pi x}{l}\right) d x, n=1,2, \ldots
\end{aligned}
$$

Non-homogeneous $B C_{s}$ :-

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=0, \quad 0<x<l, t>0 \\
u(x, 0)=\phi(x) \\
u(0, t)=g(t), u(l, t)=h(t)
\end{array}\right.
$$

Let, $\quad U(x, t)=\frac{1}{l}[(l-x) g(t)+x h(t)]$
Then, $\omega\left(x^{\prime \prime}, t\right)=(u-U)(x, t)$ satisfies:

$$
\left\{\begin{array}{l}
\omega_{t}-k \omega_{x x}=-\frac{1}{l}\left\{(l-x) g^{\prime}(t)+x h^{\prime}(t)\right\} \\
\omega(x, 0)=\phi(x)-\frac{1}{l}\{(l-x) g(0)+x h(0)\} \\
\omega(0, t)=\omega(l, t)=0
\end{array}\right.
$$

This can be solved by previous technique.

Thm 14 (Maximu m-Minimum principle)
Let, $R=\{(x, t): 0 \leq x \leq \ell ; \quad 0 \leq t \leq T\}$

$$
\Gamma=\{(x, t) \in R: t=0 \text { or } x=0 \text { or } x=1\}
$$

Let, $u(x, t)$. be continuous fro in $R$ which satisfies $\quad u_{t}-k u_{x x}=0$ in $R-\Gamma$. Then,

$$
\max _{R} u(x, t)=\max _{\Gamma} u(x, t)
$$

and

$$
\min _{R} u(x, t)=\min _{\Gamma} u(x, t) .
$$

Proof:-
Let, $M=\max _{\Gamma} u(x, t)$.
To show

$$
\max _{\mathbb{R}} u(x, t) \leq M, \quad(\Gamma \subseteq \mathbb{R})
$$

Consider $v(x, t)=u(x, t)+\epsilon x^{2}, \quad \epsilon>0$.
Then, for $(x, t) \in R-\Gamma$

$$
\begin{aligned}
v_{t}-k v_{x x} & =u_{t}-k u_{x x}-2 \epsilon k \\
& =-2 \epsilon k<0
\end{aligned}
$$

and $v(x, t) \leq M+\epsilon l^{2}, \quad(x, t) \in \Gamma$.


If $V(x, t)$ attains its maximum at an interior pt $\left(x_{1}, t_{1}\right)$, then,

$$
v_{t}-\left.k v_{x x}\right|_{\left(x_{1}, t_{1}\right)} \geqslant 0, \text { a contradiction. }
$$

So, $v$ attains max at apt. of

$$
\partial R=\Gamma \cup \gamma, \quad \gamma=\{(x, t) \in R: t=T\}
$$

Suppose $V(x, t)$ has a maximum at $(\bar{x}, T), 0<\bar{x}<l$.
Then, $\quad v_{x}(\bar{x}, \tau)=0, \quad v_{x x}(\bar{x}, \tau) \leq 0$
tho, $v(\bar{x}, T) \geqslant v(\bar{x}, T-\delta), \quad 0<\delta<T$,

Then,

$$
\begin{aligned}
v_{t}(\bar{x}, T) & =\lim _{\delta \rightarrow 0+} \frac{v(\bar{x}, \tau)-\bar{v}(\bar{x}, T-\delta)}{\delta} \\
& \geqslant 0
\end{aligned}
$$

Hence, $v_{t}-\left.k v_{x x}\right|_{(\bar{x}, \tau)} \geqslant 0$, a contradiction.
Therefore,

$$
\begin{aligned}
& M_{1}=\max _{R} v(x, t)=\max _{\Gamma} v(x, t) \\
& \leq M+\epsilon l^{2}
\end{aligned}
$$

So, $u(x, t) \leq M+\epsilon\left(l^{2}-x^{2}\right)$ on $R$.
Letting $\epsilon \rightarrow 0$, we get, $u(x, t) \leq M$ on $R$.
So, $\max _{R} u(x, t)=\max _{p} u(x, t)$
For minimum, take $\omega(x, t)=-u(x, t)$.

Uniqueness:-
If $u_{1} \& u_{2}$ are two solis of

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=f(x, t), 0<x<l, t>0 \\
u(x, 0)=\phi(x) \\
u(0, t)=g(t), u(l, t)=h(t)
\end{array}\right.
$$

then $v=u_{1}-u_{2}$ satisfies:

$$
\left\{\begin{array}{c}
v_{t}-k v_{x x}=0 \\
v(x, 0)=0 \\
v(0, t)=0=v(l, t)
\end{array}\right.
$$

So, $\max _{R} v(x, t)=\min _{R} v(x, t)=0$.

$$
\begin{aligned}
& \Rightarrow v=0 \\
& \Rightarrow u_{1}=u_{2}
\end{aligned}
$$

(0) Tikhonov Example:-

$$
\begin{gathered}
g(t)= \begin{cases}e^{-1 / t^{2}}, & t>0 \\
0, & t \leq 0\end{cases} \\
u_{t}-k u_{x x}=0, \quad u(x>0)=0 \ldots(*) \\
u(x, t)=\sum_{k=0}^{\infty} \frac{g^{(k)}(t)}{(2 k)!} x^{2 k}
\end{gathered}
$$

satisfies (*). But, $V(x, t) \equiv 0$ is abs a som.

Hence, the Cauchy problem (*) does not hove a unique som. unless further restrictions on $u(x, t)$.

$$
\text { ie. }|u(x, t)| \leq M e^{a x^{2}}, t \geqslant 0
$$

In fact, there one infinitely many sols. to

$$
g_{\alpha}(t)=\left\{\begin{array}{ll}
e^{-t^{-\alpha}}, & t>0 \\
0, & t \leq 0
\end{array}, \alpha>1\right.
$$

HAW:-
Let, $u \in c^{2}$. Solves:

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=0,0<x<l, t>0 \\
u(x, t)=0, \quad x=0, l \\
u(x, 0)=0
\end{array}\right.
$$

If $u(x, T)=0$, then $u \equiv 0$.
[Hint: Use energy method (Heat)]
Strong Max Principle:- If $\Omega$ is connected and $\exists$ $\left(x_{0}, t_{0}\right) \in R-\Gamma$ sit. $u\left(x_{0}, t_{0}\right)=\max _{R} u(x, t)$, then, $u$ is constant $R_{t_{0}}^{0} \quad(\varepsilon$ vans $)=\left\{(x, t) \mid 0<x<l, 0<t \leq t_{0}\right\}$
(Version 2) $\frac{\text { Maximum Principle (Weak form):- }}{n}$ :-
$\omega=$ open bod set in $\mathbb{R}^{n}$

$$
\begin{aligned}
& -\Omega=\left\{(\underline{x}, t) \in \mathbb{R}^{n+1}: \underline{x} \in \omega, \quad 0<t<T\right\} \\
& \partial^{\prime \prime} \Omega=\{(\underline{x}, t): \underline{x} \in \omega, \quad t=T\} \\
& \partial^{\prime} \Omega=\{(\underline{x}, t): \underline{x} \in \partial, \quad 0 \leq t \leq T\} \cup\{(\underline{x}, t): \underline{x} \in \omega, t=0\}
\end{aligned}
$$

$$
\partial \Omega=\partial \Omega^{\prime} \cup \partial \Omega^{\prime \prime}
$$

If $u_{t}-\Delta u \leqslant 0$ in $\Omega$, then,

$$
\max _{(\underline{x}, t) \in \bar{\Omega}} u(\underline{x}, t)=\max _{\partial^{\prime} \_\Omega} u(\underline{x}, t)
$$

(*)


Stability:-
Let, $u_{1}$ and $u_{2}$ be two sols of

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=f(x, t) \quad x \in \Omega \\
u_{i}(x, 0)=\Phi_{i}(x) \\
u_{i}(x, t)=h_{i}(t), \quad x \in \partial \Omega
\end{array}\right.
$$

Let, $\in=\max _{\Omega}\left|\phi_{1}-\phi_{2}\right|+\max _{\partial \Omega x\{t>0\}}\left|h_{1}-h_{2}\right|$, then

$$
\left|u_{1}-u_{2}\right| \leqslant \epsilon, \quad(x, t) \in \Omega \times[0, T]
$$

Problems :-

1. The max principle is not valid for parabolic eqn with variable co-eff. Verify for $u_{t}-x u_{x x}=0$ in

$$
\begin{gathered}
R=\{(x, t):-2 \leq x \leq 2,0 \leq t \leq 1\} \text { has a som } \\
u(x, t)=-2 x t-x^{2} \text { and } \quad \max _{R} u(x, t)=u(-1,1)=1
\end{gathered}
$$

2. 

$$
\begin{cases}u_{t}-u_{x x}=0, & 0<x<2, \\ u(x, 0)=x(2-x) & t>0 \\ u(0, t)=0=u \leq 2\end{cases}
$$

S.t. 1) $0<u(x, t)<1 \quad \forall t>0, \quad 0<x<2$
ii) $u(x, t)=u(2-x, t)$ for everly $t \geqslant 0,0 \leq x \leq 2$
iii) $\int_{0}^{2} u^{2}(x, t) d x \leq \frac{16}{15} \quad \forall t \geqslant 0 \quad(E(t) \leq E(0))$
3.

Prove that $Q(x, t)=Q(\sqrt{a} x, a t)$ satisfies the heat eqn. for $a>0$. Choose $a=\frac{1}{4 k t}$ to prove it has a special form, $Q(x, t)=q\left(\frac{x}{\sqrt{4 k t}}\right)$.
4. Prove the uniqueness of the sols of the diffusion problem:

$$
\begin{aligned}
& u_{t}-k u_{x x}=f(x, t), \quad 0<x<l, t>0 \\
& u(x, 0)=\phi(x) \\
& u_{x}(0, t)=g(t), u_{x}(l, t)=h(t) \\
& \text { d. }
\end{aligned}
$$

by energy method.
5. Solve the eq. $u_{t}-k u_{x x}+b u=0,-\infty<x<\alpha, u(x, 0)=\phi(x)$, $b>0$. (Hint: $v(x, t)=e^{b t} u(x, t)$ ).
6. Prove that, wave eqn doesn't follow maximum principle

$$
\left[u(x, t)=\sin x \sin t \text { satisfies } u_{t t}-u_{x x}=0 \text { in }[0, \pi] \times[0, \pi]\right.
$$

with $u(x, 0)=0, \quad u_{t}(x, 0)=\sin x, u(0, t)=0=u(\pi, t)$. $\max _{R} u(x, t)=1=u(\pi / 2, \pi / 2)$ in an interior pt.
But $u=0$ along the boundary. $\square$.
7. Comparison principle:- If $u \& v$ are two solus of $u_{t}-k u_{x x}=0$ and $u \leq v$ for $t=0, x=0$ and $x=l$ then $u \leq v$ for $0 \leq t<\infty, \quad 0 \leq x \leq l$.
8. Let, $Q=\{(x, t) \mid 0<x<\pi, 0<t \leq T\}$. Let $u$

Solves

$$
\begin{aligned}
& u_{t}-u_{x x}=0 \quad \text { in } Q \\
& u(0, t)=0=u(\pi, t), \quad 0 \leq t \leq T . \\
& u(x, 0)=\sin ^{2}(x), \quad 0 \leq x \leq \pi .
\end{aligned}
$$

Show that, $0 \leq u(x, t) \leq e^{-t} \sin (x)$ in $Q$.

$$
\left[v(x, t)=e^{-t} \sin (x) \Rightarrow v_{t}-v_{x x}=0 \quad \begin{array}{l}
v(0, t)=0=v(\pi, t) \\
\\
v(x, 0)=\sin x
\end{array}\right\}
$$

and $\quad \sin x \geqslant \sin ^{2} x$ in $0 \leqslant x \leqslant \pi$.
So, $u(x, t) \leq v(x, t)$ in $Q$ by Max principle
All, by Min -principle,

$$
0 \leqslant u(x, t) \leq v(x, t)
$$

