Laplace Equation:-

The dirac delta:-

We define the dirac delta $\delta(x)$ as:

$$
\delta(x)=\lim _{\epsilon \rightarrow 0} f_{\epsilon}(x)
$$

Dirac delta is not a function, but a generalized for or distribution. If has the following properties:

1) $\delta(x)= \begin{cases}0, & x \neq 0 \\ \infty, & x=0\end{cases}$
2) $\int_{-\infty}^{\infty} \delta(x) d x=1$
3) $\int_{-\infty}^{\infty} f(x) \delta(x) d x=f(0)$

At $x=a: \quad \delta(x-a) \Rightarrow$

$$
\delta(x-a)= \begin{cases}0, & x \neq a \\ \infty, & x=a .\end{cases}
$$

Laplace eqn:-

Stationary heat os wove eqn:

$$
\begin{aligned}
& u_{x x}=0 \quad[\text { one-dimension }] \\
& u_{x x}+u_{y y}=0 \quad[2 \cdot d \text { dim }]
\end{aligned}
$$

A solution of the Laplace eat is called a harmonic fr!

Non-homogeneous version :-

$$
-\left(u_{x x}+u_{y y}\right)=f(x, y)
$$

or $-\Delta u=f \quad$ is called the

Poisson en.

1. Arise in Electrostatics: $\nabla \times E=0 \Rightarrow E=-\nabla \phi \quad$ [Maxwell Eq:]

$$
\nabla \cdot E=k \Rightarrow \Delta \phi=-k .
$$

2. Complex analysis: $f(z)=u(x, y)+i u(x, y)$ is analytic
$\Rightarrow u, v$ satisfies Cauchy-Riemann eqns.

$$
u_{x}=v_{x}, \quad u_{y}=-v_{x}
$$

Then, $\quad \Delta u=0, \quad \Delta v=0$.

Deter. u is sub-harmonic if $\Delta u \geqslant 0$, and super-harmonic if $\Delta u \leq 0$

ExT:

$$
\begin{aligned}
f(x, y)= & x y \\
& f_{x x}+f_{y y}=0
\end{aligned}
$$

H.W:-
u, v are harmonic. Show that, $u v$ is harmonic iff $\nabla u \cdot \nabla v=0$.
H.W: Let, u is harmonic and u^{L} is harmonic. Then prove that, u is a constant.
H.W: The Laplacian operator is the trace of the Hessian matrix.

In polar co-ordinates:

$$
\Delta \equiv \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}
$$

Green's Theorem:-
(Relation between double integral and line integral)
Let, C be a +ely oriented (D is on the left of C) simple, closed, piecewise smooth curve bounding the region D. If $P(x, y) \& Q(x, y)$ are cont and have cont. $P . d s$ in D, then,

$$
\begin{align*}
& \oint_{C}(P d x+Q d y)=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A \tag{*}\\
& \Rightarrow \quad \int_{\partial D}(P d x+Q d y)=\iint_{D}\left(Q_{x}-P_{y}\right) d x d y
\end{align*}
$$

$\Rightarrow \partial_{n} u=\frac{\partial u}{\partial n}=\nabla u \cdot \vec{n}:$ directional derivative or normal derivative in the direction of \vec{n}.

If we put, $P=-V, Q=U$, then (*) becomes:

$$
\begin{aligned}
\iint_{D}\left(U_{x}+V_{y}\right) d A & =\int_{\partial D}(U d y-V d x) \\
& =\int_{\partial D}(U, V) \cdot\left(\frac{d y}{d s},-\frac{d x}{d s}\right) d s \\
& =\int_{\partial D}(U, V) \cdot \vec{T} d s \quad\left(\frac{d x}{d s}, \frac{d y}{d s}\right)
\end{aligned}
$$

So, $\quad \iint_{D}\left(U_{x}+V_{y}\right) d A=\int_{\partial D}(u, v) \cdot \vec{n} d s \ldots \ldots(A)$

Now, let, $U=\psi \phi_{x}, V=\psi \phi_{y}$. then (\$) reduces to:

$$
\begin{align*}
\iint_{D}\left(\psi\left(\phi_{x x}+\phi_{y y}\right)+\psi_{x} \phi_{x}+\psi_{y} \phi_{y}\right) d A & =\int_{\partial D} \psi \nabla \phi \cdot \vec{n} d s \\
& =\int_{\partial D} \psi \frac{\partial \phi}{\partial n} d s \tag{1}
\end{align*}
$$

lily, interchanging $\psi \& \phi$ we get

$$
\begin{equation*}
\iint_{D}\left[\phi\left(\psi_{x x}+\psi_{y y}\right)+\psi_{x} \phi_{x}+\psi_{y} \phi_{y}\right] d A=\int_{\partial D} \phi \frac{\partial \psi}{\partial \eta} d s \tag{11}
\end{equation*}
$$

(1)
-(11)

$$
\begin{align*}
& \Rightarrow \int_{D}(\psi \Delta \phi-\phi \Delta \psi) d A=\int_{\partial D}\left(\psi \frac{\partial \phi}{\partial n}-\phi \frac{\partial \psi}{\partial n}\right) d s \tag{A}
\end{align*}
$$

This is called the Green's Identity.
\# $\operatorname{In} \mathbb{R}^{n}$:

$$
\begin{equation*}
\iint_{D} \Psi \Delta \phi d A=-\iint_{D} \sum_{i=1}^{n} \psi_{x_{i}} \phi_{x_{i}} d A+\int_{\partial D} \psi \frac{\partial \phi}{\partial n} d s \tag{B}
\end{equation*}
$$

\# If $\psi=1$., then, $(A) \Rightarrow$

$$
\begin{equation*}
\iint_{D} \Delta \phi=\int_{\partial D} \frac{\partial \phi}{\partial n} d s \tag{c}
\end{equation*}
$$

\# If $\phi=\psi$. then $(B) \Rightarrow$

$$
\begin{align*}
& f \phi=\psi \text {. then (B) } \Rightarrow \tag{D}\\
& \iint_{D} \phi 4 \phi d A=-\iint_{D} \sum_{i=1}^{n} \phi_{x_{i}}^{2} d A+\int_{\partial D} \phi \frac{\partial \phi}{\partial n} d s \\
& \ldots(D)
\end{align*}
$$

This is called the Energy Identily.

Boundary Value Problems:-

1. Dirichlet problem:

$$
\left.\begin{array}{rl}
-\Delta u=f & \text { ind } \tag{III}\\
u=0 & \text { on } \partial D
\end{array}\right\}
$$

\Rightarrow The som of (III), if exists, is unique.
Let, u_{1}, u_{2} are two sols. ten $v=u_{1}-u_{2}$
Solves:

$$
\begin{aligned}
\Delta v=0 & \text { in } D \\
v=0 & \text { on } \partial D .
\end{aligned}
$$

Now, by Energy Identity,

$$
\begin{aligned}
& \iint_{D} \sum_{i=1}^{n}\left(\frac{\partial U}{\partial x_{i}}\right)^{2} d A=0 \\
\Rightarrow & \frac{\partial v}{\partial x_{i}}=0 \quad \forall i \text { in } D . \Rightarrow v=\text { constant in } D .
\end{aligned}
$$

But, $v=0$ on ∂D. and $v \in C^{2}(\bar{D})$, so,

$$
\begin{aligned}
& v=0 \text { on } D . \\
& \Rightarrow u_{1}=u_{2} \quad \text { (Unique) }
\end{aligned}
$$

2. Neumann Problem :-

$$
\left.\begin{array}{rl}
-4 u & =f \quad \text { in } D \\
\frac{\partial u}{\partial n}=0 & \text { on } \partial D .
\end{array}\right\} \cdots(v)
$$

\Rightarrow The sols of the Neumann problem is unique upto an addition of a constant.

Let, u_{1}, u_{2} solve (iv), then $v=u_{1}-u_{2}$ solves

$$
\left.\begin{array}{ll}
\Delta v=0 & \text { in } D \\
\frac{\partial v}{\partial n}=0 & \text { in } \partial D
\end{array}\right\}
$$

Now, by energy identity (D).

$$
\frac{\partial v}{\partial x_{i}}=0 \quad \forall i \quad i m D \text {. }
$$

So, $v=$ cost. in D.

Hence, $\quad u_{1}-u_{2}=$ cons. in D.
\# Compatibility Condo :-

$$
\begin{array}{ll}
\Delta u=0 & \text { in } D \\
\frac{\partial u}{\partial n}=f & \text { on } \partial D .
\end{array}
$$

Then, (c) \Rightarrow

$$
\int_{\partial D} f(s) d s=0 . \quad\left(\begin{array}{c}
\text { Neccessary condu. for }) \\
\text { so lm }
\end{array}\right.
$$

H.W.

Prove that the sols of the Robin's problem for the Laplace eq. is cenique, when $\alpha>0$ is a cost.

$$
\begin{gathered}
\Delta u=0 \quad \text { in } D \\
\frac{\partial u}{\partial n}+\alpha u=f \text { on } \partial D .
\end{gathered}
$$

Dirichlet problem on a Rectangle:-

$$
(1) \cdots\left\{\begin{array}{l}
u_{x x}+u_{y y}=0, \quad 0<x<l, \quad 0<y<L \\
u(0, y)=u(l, y)=0 \\
u(x, 0)=\phi(x), u(x, L)=0
\end{array}\right.
$$

let, the sole of (i) is of the form:

$$
\begin{gathered}
u(x, y)=F(x) G(y) . \quad \text { Then, } \\
\frac{F^{\prime \prime}}{F}+\frac{G^{\prime \prime}}{G}=0 \\
\therefore \frac{F^{\prime \prime}}{F}=-\frac{G^{\prime \prime}}{G}=\lambda, \text { say } \\
F^{\prime \prime}-\lambda F=0 \quad \& \quad G^{\prime \prime}+\lambda G=0 \\
u(0, y)=u(l, y)=0 \Rightarrow F(0)=F(l)=0
\end{gathered}
$$

$$
\text { \& } G(L)=0
$$

For non-trivial salon., $\quad \lambda<0 ., \lambda=-\mu^{2}, \mu>0$

$$
\begin{aligned}
& \therefore F^{\prime \prime}+\mu^{2} F=0, \quad F(0)=F(l)=0 \\
& \Rightarrow F(x)=A \sin (\mu x)+B \cos (\mu x) \\
& F(0)=0 \Rightarrow B=0 \\
& F(l)=0 \Rightarrow \sin ^{(\mu l)} \Rightarrow=0 \Rightarrow \mu_{n}=\frac{n \pi}{l}, n=1,2, \ldots \\
& \therefore F_{n}(x)=A_{n} \sin \left(\frac{n \pi x}{l}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& G^{\prime \prime}-h^{2} G=0 \\
& \Rightarrow G(y)= \\
& G(L)=0 \quad \Rightarrow D=0 \quad C \sinh (\mu(L-y))+D \operatorname{cohh}(\mu y) \\
& \therefore \quad G(y)=C \sinh (\mu \quad(L-y)) \\
& \text { ie. } G_{n}(y)=C_{n} \sinh \left(\frac{n \pi}{l}(L-y)\right) \\
& \therefore u(x, y)=\sum_{n=1}^{\infty} D_{n} \sin \left(\frac{n \pi x}{l}\right) \sinh \left(\frac{n \pi \cdot}{l}(L-y)\right) \\
& \text { with } u(x, 0)=\phi(x)=\sum_{n=1}^{\infty} D_{n} \sinh \left(\frac{n \pi L}{l}\right) \sin \left(\frac{n \pi x}{l}\right) \\
& \therefore \quad D_{n}=\frac{2}{l \sinh \left(\frac{n \pi L}{l}\right)} \int_{0}^{l} d(x) \sin \left(\frac{n \pi x}{l}\right) d x \\
& \therefore \quad u(x, y)=\sum_{n=1}^{\infty}\left(\frac{2}{l \sinh \left(\frac{n \pi L}{l}\right)} \int_{0}^{l} \phi(x) \sin \left(\frac{n \pi x}{l}\right) d x\right) \sin \left(\frac{n \pi x}{l}\right) \\
& \therefore \quad \sinh \left(\frac{n \pi(L-y)}{l}\right)
\end{aligned}
$$

$$
\text { (11) } \ldots\left\{\begin{array}{c}
u_{x x}+u_{y y}=0, \quad 0<x<l, \quad 0<y<L \\
u(x, 0)=\phi(x), u(x, L)=0 \\
u_{x}(0, y)=0=u_{x}(l, y)
\end{array}\right.
$$

Two sides insulated. Let, $u(x, y)=F(x) G(y)$.

$$
\begin{gathered}
\frac{F^{\prime \prime}}{F}+\frac{G^{\prime \prime}}{G}=0 \\
\therefore \quad F^{\prime \prime}-\lambda F=0, \quad G^{\prime \prime}+\lambda G=0 \\
F^{\prime}(0)=F^{\prime}(l)=0 \quad
\end{gathered}
$$

For nontrivial som, $\quad \lambda=-\mu^{2}, \mu \geq 0$.

$$
\begin{aligned}
& \therefore F(x)=A \sin (\mu x)+B \cos (\mu x) \\
& F^{\prime}(0)=0 \Rightarrow A=0 \\
& \therefore F(x)=B \cos (\mu x), F^{\prime}(l)=0 \Rightarrow \mu_{n}=\frac{n \pi}{l} . \\
& n=0,1,2, \ldots
\end{aligned}
$$

$$
\begin{align*}
& F_{n}(x)=B_{n} \cos \left(\frac{n \pi x}{l}\right), \quad n=0,1,2, \ldots \\
& G^{\prime \prime}-\mu^{2} G=0, \quad, \quad c \sinh (\mu(L)=0 \\
& G(y)=-L)) \\
& \therefore G_{n}(y)=C_{n} \sinh \left(\frac{n \pi(y-L)}{\ell}\right), n=0,1,2, \ldots \\
& \therefore \quad u(x, y)=\sum_{n=0}^{\infty} D_{n} \sinh \left(\frac{n \pi(y-L)}{l}\right) \cdot \cos \left(\frac{n \pi x}{l}\right) .
\end{align*}
$$

Now, $\quad u(x, 0)=\phi(x) \Rightarrow$

$$
\begin{aligned}
& \phi(x) \Rightarrow \\
& \phi(x)=-\sum_{n=0}^{\infty} D_{n} \sinh \left(\frac{n \pi L}{l}\right) \cos \left(\frac{n \pi x}{l}\right) .
\end{aligned}
$$

$$
\text { with } D_{n}=-\frac{2}{l \sinh \left(\frac{n \pi L}{l}\right)} \int_{0}^{l} \phi(x) \cos \left(\frac{n \pi x}{l}\right) d x
$$

HeW

$$
\left\{\begin{array}{l}
\Delta u=0, \quad 0<x<l, \quad 0<y<L \\
u(x, 0)=0=u(x, L) \\
u(0, y)=g(y), \quad u_{x}(l, y)=h(y)
\end{array}\right.
$$

Maximum Principle:- (Maximu m-Minimum principle)
Suppose $u \in c^{2}(\Omega) \cap c(\bar{\Omega})$ is a harmonic f_{n} in a bod domain Ω. Then,

$$
\begin{array}{ll}
\max _{\bar{\Omega}} u=\max _{\Gamma} u, \quad, \Gamma=\partial \Omega . \\
\min _{\bar{\Omega}} u=\min _{\Gamma} u .
\end{array}
$$

Prof:-
Since $\partial \Omega \subseteq \Omega, \max _{\Gamma} u \leq \max _{\bar{\Omega}} u$.
sufficient to prove.

$$
\max _{\Omega} u \leq \max _{\Gamma} u
$$

Consider the fro, $v(x)=u(x)+\epsilon|x|^{2}, \quad x \in-\bar{\Omega}$.
For $x \in \Omega, \quad \Delta v=\Delta u+2 n \epsilon$

$$
\begin{aligned}
|x|^{2} & =x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \\
\Delta|x|^{2} & =\nabla \cdot\left(\nabla|x|^{2}\right) \\
& =2 n
\end{aligned}
$$

Now, if v attains local max, at $p t \quad x \in \Omega$, then,

$$
\begin{aligned}
v_{x_{i} x_{i}} & \leq 0 \quad, i=1,2, \ldots, n \\
\text { i.e. } \Delta v & \leq 0 .
\end{aligned}
$$

So, v does not attain maximum in Ω.
But, v has to have a maximum in $\bar{\Omega}$, so it is attained at $x^{*} \in \partial \Omega$. So, for $x \in \bar{\Omega}$

$$
\begin{aligned}
u(x) \leqslant v(x) \leqslant v\left(x^{*}\right) & =u\left(x^{*}\right)+\epsilon\left|x^{*}\right|^{2} \\
& \leqslant \max _{\partial \Omega} u+\epsilon \max _{\partial \Omega}|x|^{2}
\end{aligned}
$$

So, $u(x) \leqslant \max _{\partial \Omega} u(x), \forall x \in \bar{\Omega}$.
So, $\max _{\sqrt{2}} u \leq \max _{\partial \Omega} u$.
Hence the result.

The minimum principle holds by applying max. principle to $w=-u$.

Alternating Proof:-
Let, $M=\max _{\partial \Omega} u$
Suppose $\max _{\bar{\Omega}} u$ is not attained in $\partial \Omega$.
Then, it must be attained is ide Ω, at $P_{0}\left(x_{0}, y_{0}\right)$.

Let, $M_{0}=u\left(x_{0}, y_{0}\right)=\max _{\Omega} u=\max _{\bar{\Omega}} u$
Then, $\quad M \leq M_{0}$.
Consider

$$
v(x, y)=u(x, y)+\frac{M_{0}-M}{4 R^{2}}\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]
$$

where, $P(x, y) \in \Omega$ and R is the radius of a circle, containing Ω.

Note that, $v\left(x_{0}, y_{0}\right)=u\left(x_{0}, y_{0}\right)=M_{0}$ \&

$$
\begin{aligned}
& \text { Note that, } v\left(x_{0}, y_{0}\right)=u\left(x_{0}, y_{0}\right)=1.0 \\
& \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}=d\left(P, P_{0}\right)<2 R \text {. for } \\
& (x, y) \in \bar{\Omega} .
\end{aligned}
$$

So, $\quad v(x, y) \quad \angle M+\frac{\left(M_{0}-M\right)}{4 R^{2}} 4 R^{2}=M_{0}$ on $\partial \Omega$.
Therefore, $V(x, y)$ must attain its max inside Ω. Now,

$$
\Delta v=\Delta u+\frac{M_{0}-M}{R^{2}}=\frac{M_{0}-M}{R^{2}}>0 \text { in } \Omega .
$$

But, for maximum inside Ω,

$$
v_{x x} \leq 0, \quad v_{y y} \leq 0 \quad \text { ie. } \quad \Delta v \leq 0
$$

a contradiction.
So, the maximum of u muss be attained on $\partial \Omega$.
*The 15
The som of the Dirichlet problem, it it exists, is unique.

Proof Let, $u_{1} \& u_{2}$ be two soms of the Dirichlet problem:

$$
\begin{array}{ll}
\Delta u=f \text { in }-\Omega, & f \in C(\bar{r}) \\
u=\phi \text { in } \partial \Omega, & \phi \in C(\partial-\Omega)
\end{array}
$$

Let, $v=u_{1}-u_{2}$. Then, v is also harmonic and $v=0$ on $\partial \Omega$. The max-min principle gives:

$$
\begin{aligned}
& v=0 \text { in } \Omega . \\
& \text { ire. } u_{1}=u_{2} \quad \text { in } \Omega .
\end{aligned}
$$

This gives the uniqueness.

Remark:-
For uniqueness, in the above tho, Ω needs to be bounded.
counter ExT:-

$$
\begin{aligned}
& \Delta u=0, \quad x \in \mathbb{R}, \quad 0<y<\infty \\
& u(x, 0)=0, \quad x \in \mathbb{R} \\
& u_{1}(x, y)=x y \& u_{2}(x, y)=0 \text { are }
\end{aligned}
$$ two sole. of the Dirichlet problem.

Stability :-
Let, Ω be a bold domain \& $u_{i} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ solve
$\Delta u_{i}=f \quad$ in f,
$u_{i}=g_{i}$ on $\partial \Omega$, where
$g_{i} \in C(\partial-\Omega), i=1,2$. Then, $u_{1} \& u_{2}$ satisfy

$$
\max _{\bar{\Omega}}\left|u_{1}-u_{2}\right| \leq \max _{\partial \Omega}\left|g_{1}-g_{2}\right|
$$

Proof:-
Define $\omega=u_{1}-u_{2}$. Then ω satisfies:

$$
\begin{aligned}
\Delta \omega & =0 \text { in } \Omega \\
\& \omega & =g_{1}-g_{2} \text { on } \partial \Omega .
\end{aligned}
$$

By Max-Min principle,

$$
\begin{aligned}
& \min _{\partial \Omega}\left(g_{1}-g_{2}\right) \leq \omega(x, y) \leq \max _{\partial \Omega}\left(g_{1}-g_{2}\right), \\
& \forall(x, y) \in \Omega .
\end{aligned}
$$

\therefore This results the proof.
Strong Maximum Principle:Connected Let, $\Omega \subseteq \mathbb{R}^{2}$ be a_{K} domain (need not be bounded) and $u: \Omega \rightarrow \mathbb{R}$ be a harmonic $f=$.. If u attains its maximum in Ω, then u is constant.

Proof:- See Evans.

Dirichlet Problem in a Disk:-
Consider

$$
\begin{cases}u_{x x}+u_{y y}=0, & \text { in } x^{2}+y^{2}<a^{2} \\ u(x, y)=\bar{g}(x, y) & \text { on } x^{2}+y^{2}=a^{2}\end{cases}
$$

In polar. coordinates, the eq is:

$$
U_{r r}+\frac{1}{r} U_{r}+\frac{1}{r^{2}} U_{\theta \theta}=0 \quad \text { for } \begin{aligned}
& 0 \leq r<a \\
& 0<\theta \leq 2 \pi
\end{aligned}
$$

with $B C$: $U(a, \theta)=g(\theta), \quad 0 \leq \theta \leq 2 \pi$
where, $u(x, y)=U(r, \theta)$, with $x=r \cos \theta$ $y=r \sin \theta$.
and $\bar{g}(a \cos \theta, a \sin \theta)=g(\theta)$.
Separation of variables:-
Assume the sols as:

$$
\begin{aligned}
& U(r, \theta)=F(r) G(\theta) . \\
& F^{\prime \prime} G+\frac{1}{r} F^{\prime} G+\frac{1}{r^{2}} F G^{\prime \prime}=0 \\
\Rightarrow & r^{2} \frac{F^{\prime \prime}}{F}+r \frac{F^{\prime}}{F}=-\frac{G^{\prime \prime}}{G}=\lambda \text {, say. } \\
\therefore & r^{2} F^{\prime \prime}+r F^{\prime}-\lambda F=0 \& G^{\prime \prime}+\lambda G=0 .
\end{aligned}
$$

Both U and g are 2π-periodic w.r.ts θ.
So, G is 2π-periodic. i.e.

$$
\begin{aligned}
& G(\theta)=G(2 \pi+\theta) . \\
& \lambda=0: \quad G^{\prime \prime}=0 \Rightarrow G=A+B \theta
\end{aligned}
$$

Now, $\dot{G}(\theta)=G(2 \pi+\theta)$

$$
\begin{aligned}
& \Rightarrow A+B \theta=A+B \theta+2 \pi B \\
& \Rightarrow B=0 .
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \lambda=0, \quad G(\theta)=A \& \\
& \quad r^{2} F^{\prime \prime}+r F^{\prime}=0 \\
& \quad \int \frac{d F^{\prime}}{F^{\prime}}+\int \frac{d r}{r}=c \\
& \therefore \quad \ln \left(r F^{\prime}\right)=\ln c^{\prime} \\
& \Rightarrow \quad \frac{d F}{d r}=\frac{c^{\prime}}{r} \\
& F(r)=c \ln (r)+D
\end{aligned}
$$

$\therefore \lambda=0: U(\gamma, \theta)=C^{\prime} \ln (\gamma)+D^{\prime}$ is a Soln.

$$
\lambda<0: \quad \lambda=-\mu^{2} . \quad G^{\prime \prime}-\mu^{2} G=0
$$

$$
\therefore G(\theta)=A_{1} e^{\mu \theta}+B_{1} e^{-\mu \theta}
$$

If A_{1} or $B_{1} \neq 0,|G(\theta)| \rightarrow \infty$ as $\theta \rightarrow \infty$, which contrudicts perioslicily.
$\lambda>0: \quad \lambda=\mu^{2}$.

$$
G(\theta)=A \operatorname{Cos}(\mu \theta)+B \operatorname{Sin}(\mu \theta)
$$

Now, $G(\theta)=G(2 \pi+\theta) \quad\left[\begin{array}{c}G(0)=G(2 \pi) \\ \&\end{array}\right.$

$$
\begin{array}{lll}
\text { v, } & G(\theta)=G(2 \pi+\theta) & \left.G^{\prime}(0)=G^{\prime}(2 \pi)\right] \\
\Rightarrow & G=n, & n \in \mathbb{N} .
\end{array}
$$

i.e. $\quad \lambda_{n}=n^{2}, n \in \mathbb{N}, G_{n}(\theta)=A_{n} \cos (n \theta)+B_{n} \sin (n \theta)$
\quad Now, $\quad r^{2} F^{\prime \prime}+r F^{\prime}-\mu^{2} F=0 \quad$ (Eul,'s eqn.
Put. $r=e^{t} \Rightarrow\left[D(D-1)+D-\mu^{2}\right] F=0$

$$
D \equiv \frac{d}{d t}
$$

$$
\begin{aligned}
\Rightarrow \quad & \left(D^{2}-\mu^{2}\right) F=0 \\
\therefore \quad & F(t)= \\
& C e^{\mu t}+E e^{-\mu t} \\
\therefore F_{n}(r) & =c_{n} r^{n}+E_{n} \frac{1}{r^{n}} \quad, n \in \mathbb{N} .
\end{aligned}
$$

So, $\quad U_{n}(r, \theta)=\left(A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right)\left(C_{n} r^{n}+E_{n} \frac{1}{r^{n}}\right)$ is a sole., for $n \in \mathbb{N}$

Also, $U_{0}(r, \theta)=A_{0}+B_{0} \ln (r)$ is a sol.
since
Now, $\frac{1}{r^{n}} \rightarrow \infty_{h}^{\text {or } \ln (r) \rightarrow-\infty}$ as $r \rightarrow 0, \quad \begin{aligned} & E_{n}=0 \quad \forall n . ~ S o, ~ \\ & E_{0}=0\end{aligned} \quad$.

$$
\begin{equation*}
U(r, \theta)=\frac{k_{0}}{2}+\sum_{n=1}^{\infty} r^{n}\left(k_{n} \cos n \theta+\ln \sin n \theta\right) \tag{*}
\end{equation*}
$$

is the soln. With the $B C$:

$$
\begin{aligned}
& U(a, \theta)=g(\theta) \text { i.e. } \\
& g(\theta)=\frac{k_{0}}{2}+\sum_{n=1}^{\infty} a^{n}\left(k_{n} \cos n \theta+\ln \sin n \theta\right) .
\end{aligned}
$$

So,

$$
\left.\begin{array}{rl}
k_{n} & =\frac{1}{\pi a^{n}} \int_{0}^{2 \pi} g(\theta) \cos n \theta d \theta \\
\& l_{n} & =\frac{1}{\pi a^{n}} \int_{0}^{2 \pi} g(\theta) \sin n \theta d \theta \tag{*x}
\end{array}\right\}
$$

$(*)-(* *)$ is the full soling. of the Dirichlet problem.

The series (*) can be summed exactly!

$$
\begin{aligned}
U(r, \theta) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) d \theta+\sum_{n=1}^{\infty} \frac{1}{\pi}\left(\frac{r}{a}\right)^{n} \int_{0}^{2 \pi} g(\phi) \cos (\theta-\phi) n d \phi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\phi)\left[1+2 \sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n} \cos n(\theta-\phi)\right] d \phi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\phi)\left[1+\sum_{n=1}^{\infty}\left(\frac{r}{a} e^{i(\theta-\phi)}\right)^{n}+\sum_{n=1}^{\infty}\left(\frac{r}{a} e^{-i(\theta-\phi)}\right)^{n}\right] d \phi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\phi)\left[1+\frac{r e^{i(\theta-\phi)}}{a-r e^{i(\theta-\phi)}}+\frac{r e^{-i(\theta-\phi)}}{a-r e^{-i(\theta-\phi)}}\right] d \phi
\end{aligned}
$$

(Geometric series

$$
\begin{align*}
& \quad=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{g(\phi)\left(a^{2}-r^{2}\right)}{a^{2}+r^{2}-2 a r \cos (\theta-\phi)} d \phi \\
& \therefore \quad\left(\left.J(r, \theta)=\frac{a^{2}-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{g(\phi)}{a^{2}+r^{2}-2 \operatorname{arct} \cos (\theta-\phi)} \right\rvert\,<1\right)
\end{align*}
$$

This is called the Poisson'\$ formula for a circle. $\left\{\begin{array}{l}\bar{x}:(r, \theta) \text { in polar coordinates } \\ \bar{x}^{\prime}:(a, \phi) \text { on the circle. } \\ \text { then, } u(\bar{x})=\frac{a^{2}-|\bar{x}|^{2}}{2 \pi a} \int_{\left|\times x^{\prime}\right|=a}^{\left|\bar{x}-\bar{x}^{\prime}\right|^{2}} d s, \cdots(11)\end{array}\right.$
where $d s=a$ arc length element.
(11) is the line-integral form of (1).

Value Property :-
Let, U be a harmonic f in a disk D, Continuous in its closure \bar{D}. Then, the value of u at the center of D equals the. average of u on its circumference.

Prof:- (II) \Rightarrow

$$
\begin{aligned}
u(\overline{0}) & =\frac{a^{2}}{2 \pi a} \int_{\left|x^{\prime}\right|=a} \frac{u\left(\bar{x}^{\prime}\right)}{a^{2}} d s \\
& =\frac{1}{2 \pi a} \int_{\left|x^{\prime}\right|=a} u\left(\bar{x}^{\prime}\right) d s
\end{aligned}
$$

This is the avg. of u on $\left|x^{\prime}\right|=a$.

Remark:- If $g(\theta)=1$, then, $(* *) \Rightarrow$

So,

$$
\begin{aligned}
& K_{0}=2 . \\
& 0, U(r, \theta)=1=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(a^{2}-r^{2}\right) d \phi}{a^{2}-2 a r \cos (\theta-\phi)+r^{2}} \\
& \therefore \quad g(\theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(a^{2}-r^{2}\right)}{a^{2}-2 a r \cos (\theta-\phi)+r^{2}} g(\theta) d \psi
\end{aligned}
$$

Non-homogeneous Problem:-

$$
\text { (*)...\{ }\left\{\begin{aligned}
\Delta u=f & \text { in } \Omega \\
u=g & \text { on } \partial_{\Omega} \Omega
\end{aligned}\right.
$$

Write $u=v+w$ with
where v is a particular som of the poisson eq.
\Rightarrow If f is a poly n of degree n, we seek for sols in poly of degree $(n+2)$.

EXC.

$$
\begin{gathered}
\Delta u=-2, \quad 0<x<a, \quad 0<y<b \\
u(0, y)=0=u(a, y), u(x, 0)=0=u(x, b)
\end{gathered}
$$

Let, $\quad \cup(x, y)=A+B x+C y+D x^{2}+F y^{2}+E x y$
Substituting in $(* *)$:

$$
2 D+2 F=-2
$$

Let, $F=0, D=-1$; The remaining co-eff are arbitrary.
Therefore, $v(x, y)=a x-x^{2}$, so that v reduces to 0 on $x=0, x=a$.

To find $\Delta \omega=0,0<x<a, 0<y<b$

$$
\begin{aligned}
& \omega(0, y)=-v(0, y)=0 \\
& \omega(a, y)=-v(a, y)=0 \\
& \omega(x, 0)=-v(x, 0)=-\left(a x-x^{2}\right) \\
& \omega(x, b)=-v(x, b)=-\left(a x-x^{2}\right)
\end{aligned}
$$

By Separation of variables. we get

$$
\omega(x, y)=\sum_{n=1}^{\infty}\left[a_{n} \cosh \left(\frac{n \pi y}{a}\right)+b_{n} \sinh \left(\frac{n \pi y}{a}\right)\right] \sin \left(\frac{n \pi x}{a}\right)
$$

with

$$
-\left(a x-x^{2}\right)=\omega(x, 0)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{a}\right)
$$

\& $-\left(a x-x^{2}\right)=\omega(x, b)=\sum_{n=1}^{\infty}\left[a_{n} \cosh \left(\frac{n \pi b}{a}\right)+b_{n} \sinh \left(\frac{n \pi b}{a}\right)\right]$.

So,

$$
\begin{aligned}
& a_{n}=\frac{2}{a} \int_{0}^{a}\left(x^{2}-a x\right) \sin \left(\frac{n \pi x}{a}\right) d x \\
&=\left\{\begin{array}{l}
0, \text { neven } \\
-\frac{8 a^{2}}{n^{3} \pi^{3}} \text {, hod }
\end{array}\right. \\
& a_{n} \cosh \left(\frac{n \pi x}{a}\right) \\
& \therefore b_{n}=\frac{1-\cosh \left(\frac{n \pi b}{a}\right)}{\sinh \left(\frac{n \pi b}{a}\right)} a_{n}
\end{aligned}
$$

So, $\quad u=\left(a x-x^{2}\right)+\omega(x, y)$

Fundamental Solution:-
If $|\bar{x}|=|\bar{y}| \Rightarrow u(\bar{x})=u(\bar{y})$, then u is called a radial sol.

$$
\Delta u=0 \quad \cdots(*) \quad \text { in } \mathbb{R}^{n}-\{0\}
$$

Let, $r^{2}=\sum_{i=1}^{n} x_{i}^{2}$ for $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
Let, \exists a radial som of (*). i.e.

$$
u(\bar{x})=\quad v(r) \text { where, } r=|\bar{x}|
$$

$$
\begin{aligned}
\frac{\partial u}{\partial x_{i}} & =v^{\prime}(r) \frac{\partial r}{\partial x_{i}} \\
& =v^{\prime}(r) \frac{x_{i}}{r} \\
\frac{\partial^{2} u}{\partial x_{i}^{2}} & =\frac{v^{\prime}(r)}{r}+\frac{r v^{\prime \prime}(r)-v^{\prime}(r)}{r^{2}} \frac{x_{i}^{2}}{r} \\
\therefore \quad \Delta u & =\sum v^{\prime \prime}(r)\left(\frac{x_{i}}{r}\right)^{2}+\frac{v^{\prime}(r)}{r} \sum\left(1-\frac{x_{i}^{2}}{r^{2}}\right) \\
& =v^{\prime \prime}(r)+\frac{(n-1) v^{\prime}(r)}{r}=0 . \\
\Rightarrow \quad \frac{v^{\prime \prime}}{v^{\prime}} & \left.=\frac{(1-n)}{r} \quad \begin{array}{ll}
& =(1-n) \ln r+\ln c . \\
\Rightarrow \quad v^{\prime} & =\left(v^{\prime}(r)\right.
\end{array}\right) \\
\therefore \quad v(r) & = \begin{cases}c \ln r+d, & n=2 \\
\frac{c}{2-n} r^{2-n}+d, & n \neq 2 .\end{cases}
\end{aligned}
$$

For $n=1, \quad n(x)=c x+d$ is a harmonic for.

$$
u(\bar{x})= \begin{cases}c \ln |\bar{x}| t, \quad n=2, & (d=0) \\ \frac{c}{2-n} \frac{1}{|\bar{x}|^{n-2}}, n \geqslant 3 . & (\text { simplify })\end{cases}
$$

As $|\bar{x}| \rightarrow 0,|u(\bar{x})| \rightarrow \infty$, so, $u(\bar{x})$ satisfies

$$
\Delta u=\delta(\bar{x}) .
$$

We take c. such that $\int_{s_{\gamma}}(0) v^{\prime}(r) d s=1$.

$$
\text { i.e. } \quad 1=\left\{\begin{array}{ll}
\frac{c}{r} 2 \pi r, n=2 \\
c r^{1-n}, r^{n-1} \omega_{n}, n \geqslant 3
\end{array} ~\left(\begin{array}{ll}
\frac{1}{2 \pi}, & n=2 \\
\frac{1}{\omega_{n}}, & n \geqslant 3
\end{array}\right] \quad c=\text {-dim un } \quad \therefore \quad \begin{array}{l}
\therefore \quad
\end{array}\right.
$$

where, ω_{n} is the area of n-dim unit sphere,

$$
\omega_{n}=\frac{2 \pi^{n / 2}}{\Gamma\left(\frac{n}{2}\right)}
$$

$\Gamma(t)=\int_{0}^{\infty} e^{-\alpha} \alpha^{t-1} d \alpha, t>0$, is the
Gamma function or, $\omega_{n}=n \alpha(n), \alpha(n)=$ volume of unit sphere.
For any fixed $\bar{x}_{0} \in \mathbb{R}^{n}$, we define

$$
\mathbb{K}\left(\bar{x}_{0}, \bar{x}\right):= \begin{cases}-\frac{1}{2 \pi} \ln \left|\bar{x}-\bar{x}_{0}\right|, & n=2 \\ \frac{\left|\bar{x}-\bar{x}_{0}\right|^{2-n}}{\omega_{n}(n-2)}, & n \geqslant 3\end{cases}
$$

is the fundamental sols. of Δ at $\bar{x}_{0} \in \mathbb{R}^{n}$.

$$
\begin{aligned}
& * \rightarrow \Delta \mathbb{K}\left(\bar{x}_{0}, \bar{x}\right)=\underset{\delta\left(\bar{x}-\bar{x}_{0}\right)}{ } \quad \text { in } \mathbb{R}^{n} \quad\left[\because \delta\left(\bar{x}-\bar{x}_{0}\right)=\left\{\begin{array}{ll}
\infty, \bar{x}=\bar{x}_{0} \\
0, & \text { ex }
\end{array}\right]\right. \\
& \underset{\text { P. T.0 }}{\downarrow} \Rightarrow
\end{aligned}
$$

Thy 16
For any $f \in C_{c}^{2}\left(\mathbb{R}^{n}\right), u=\mathbb{K} * f$ is a Sols of the Poisson problem:

$$
-\Delta u=f \text { in } \mathbb{R}^{n}
$$

$\{x \in x \mid f(x) \neq 0\}[f$ vanishes outside a compact set]

Hint:

$$
\begin{aligned}
& u\left(\bar{x}_{0}\right)=\int_{\mathbb{R}^{n}} \mathbb{K}\left(\bar{x}_{0}-\bar{y}^{2}\right) f(\bar{y}) d \bar{y} \\
&-\Delta u\left(\bar{x}_{0}\right)=-\int_{\mathbb{R}^{n}} \Delta_{x} \mathbb{K}\left(\bar{x}_{0}-\bar{y}\right) f(\bar{y}) d \bar{y} \quad\left[\because \Delta_{x} \mathbb{K}=\Delta_{y} \mathbb{k}\right] \\
&=-\int_{\mathbb{R}^{n}} \Delta_{y} \mathbb{K}\left(\bar{x}_{0}-\bar{y}\right) f(\bar{y}) d \bar{y} \quad\left[\because-\Delta_{y} \mathbb{K}=\delta\left(y-x_{0}\right)\right] \\
&=\int_{\mathbb{R}^{n}} f(\bar{y}) \quad \delta\left(\bar{y}^{y}-\bar{x}_{0}\right) d \bar{y} \\
&=f\left(\bar{x}_{0}\right) \quad\left[\because \int_{\mathbb{R}^{n}} \delta(x) f(x) d x\right. \\
&
\end{aligned}
$$

For $n=2$:

$$
\begin{aligned}
\mathbb{K}\left(\bar{z}, \bar{z}_{0}\right) & =-\frac{1}{2 \pi} \ln \left(\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}\right)\left[\begin{array}{l}
\bar{z}=(x, y) \\
\overline{z_{0}}=\left(x_{0}, y_{0}\right)
\end{array}\right] \\
& =-\frac{1}{4 \pi} \ln \left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right) \\
\frac{\partial^{2} K}{\partial x^{2}} & =-\frac{1}{4 \pi} \frac{2\left[-\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]^{2}} \\
\frac{\partial^{2} k}{\partial^{2} y} & =-\frac{1}{4 \pi} \frac{2\left[\left(x-x_{0}\right)^{2}-\left(y-y_{0}\right)^{2}\right]}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]^{2}}
\end{aligned}
$$

$\therefore \quad \Delta \mathbb{K}=\delta\left(\bar{z}-\bar{z}_{0}\right)$, blows up when

$$
\begin{aligned}
\bar{z}=(x, y) & =\left(x_{0}, y_{0}\right) \\
& =\bar{z}_{0}
\end{aligned}
$$

Problems:-

1. Solve $\Delta u=1$ in $\sqrt{x^{2}+y^{2}}<a$ with $u=0$ on $x^{2}+y^{2}=a^{2}$.

$$
\text { (Ans: } u(x, y)=\frac{1}{4}\left(x^{2}+y^{2}-a^{2}\right) \text {) }
$$

$$
\begin{array}{ll}
u=v+\omega: \quad \Delta v=1, \quad \Delta w=0 \\
w=-b \text { on } r=a
\end{array}
$$

2. Solve $\Delta u=0$ in $x^{2}+y^{2}<a^{2}$ with $u=1+3 \sin \theta$ on $r=a$

$$
\text { (Ans: } u(r, \theta)=1+\frac{3 r}{a} \sin \theta \text {) }
$$

3. Solve

$$
\begin{aligned}
& \Delta u=0, \quad 0<x<\pi, \quad 0<y<\pi \\
& u(x, 0)=u(x, \pi)=0 \\
& u(0, y)=0, \quad u(\pi, y)=\sin y
\end{aligned}
$$

Is there a pt. (x, y) in $(0, \pi) \times(0, \pi)$ st. $u(x, y)=0$?
4. Let, $\Omega \leq \mathbb{R}^{2}$ is bed. $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be S.t. $\Delta u \geqslant 0$, in Ω. Prove that its max value is attained on the boundary. What can you say about the minimum value?
5. Let, u be a harmonic f ne on the whole plane Sit. $u=3 \sin (2 \theta)+1$ on the circle $x^{2}+y^{2}=2$.
Without finding the concrete form of the som, find the value of u at the origin.
6. Solve $4 u=0, \quad x^{2}+y^{2}>a^{2}$

$$
u(x, y)=h(x, y) \text { on } x^{2}+y^{2}=a^{2}
$$

u is bounded as $x^{2}+y^{2} \rightarrow \infty$.
7. Suppose u is harmonic in $p<2$ and $u=3 \sin (2 \theta)_{+1}$ for $r=2$. Find the max value of u in $r \leqslant 2$.
8. Prove that, $\ln \left(x^{2}+y^{2}\right)$ is citharmenic.

