Iterative Methods :-

Į.

BCM Math Methods

Granss-elimination or LU decomposition techniques and direct methods, i.e. a solution is obtained after a single application of GE or LU. Once a solution is obtained, GE offers no method of retimement.

- > Iterative methods begin with an initial guess Xo, then obtain a series of improved approximations X1, X2, ... that converge to the exact solution.
 - => This method can be stopped as soon as the approx. Xn have converged to an acceptable precision. In direct method, bailing out early, is not an option.
 - For large and sparse matrices, iterative methods are faster.

Jacobi Method :-

$$E_{XM}$$
: $7x_1 - x_2 = 6$
 $x_1 - 5x_2 = -4$

We rewrite the system as:

$$x_1 = \frac{1}{7} (6 + x_2)$$

 $f x_2 = \frac{1}{5} (4 + x_1)$

Then we iterate the approx. as:

$$\chi_{1}^{(k)} = \frac{1}{7} \left(6 + \chi_{2}^{(k-1)} \right)$$

$$\chi_{2}^{(k)} = \frac{1}{5} \left(4 + \chi_{1}^{(k-1)} \right)$$
for $k = 1, 2, ...,$ with an initial approx
$$\chi_{1}^{(c)} = 0, \ \chi_{2}^{(e)} = 0.$$

K10 12 3 4
$\frac{k}{\chi_{1}^{(k)}} = 0.42 \frac{3}{2} \frac{4}{35} \frac{4}{0.9959} = 0.9994$
$\chi_2^{(k)}$ 0 $\frac{4}{5}$ $\frac{34}{35}$ 0.9943 0.9992
clearly $\mathcal{R}_{(k)} \rightarrow 1$, $\mathcal{R}_{(k)} \rightarrow 1$, the exact soly.
Gauss-Seidel Method:-
One can modify Jacobi iteration to get
faster (hopefully) convergence.
We iterate () as follows:
$\chi_1^{(k)} = \frac{1}{7} (6 + \chi_2^{(k-1)})$ and then
use the improved approx Xit to calculate:
$x_2^{(k)} = \frac{1}{4} \frac{1}{5} (4 + x_1^{(k)})$ with an initial
approx. $x_1^{(0)} = 0$. $(x_1^{(0)} \text{ does not matter})$
Then, $\chi_1^{(1)} = 6/2$, $\chi_2^{(1)} = \frac{34}{35}$
$\chi_1^{(2)} = 0.9959, \chi_2^{(2)} = 0.9992$
KLO1 2
$\frac{k}{\chi_{1}^{(k)}} = 0 \frac{1}{2}$ $\frac{\chi_{1}^{(k)}}{2} = 0 \frac{5}{12} \frac{1}{2} \frac{1}{$
$\chi_{2}^{(k)}$ 0 34_{15} 0.9992
Now try the system:
$x_1 - 5x_2 = -4$ $7x_1 - 7x_2 = 6$
$7x_1 - 72 = 6$

Jo that $x_1 = 5x_2 = 4$ $x_2 = 7x_1 - 6$ Thus Jakobi : $x_1^{(k)} = 5x_2^{(k-1)} - 4$ $x_2^{(k)} = 7x_1^{(k-1)} - 6$.

.

or GS:

$$\chi_1^{(k)} = 5\chi_2^{(k-1)} - 4$$

 $\chi_2^{(k)} = 7\chi_1^{(k)} - 6$

The table becomes: Jacobi

	K	Ō	1	2	3	4
	x(K)	0	-4	- 34	-174	-1244
1	x2(K)	0	- 6	- 34	-244	-1244

or
$$GS$$

 $\frac{K \mid 0}{\chi_{1}^{(W)} \mid 0} - 4 - 174$
 $\frac{1}{\chi_{2}^{(W)} \mid 0} - 34 - 1224$
 $\frac{1}{\chi_{2}^{(W)} \mid 0} - 34 - 1224$

An nxn matrix A is strictly diagnally dominant if the absolute value of each entry on the main diagonal is greater than the sum of the absolutes values of the other entries in the same row. i.e.

$$|a_{ii}| > \sum_{\substack{J=1\\J\neq i}} |a_{ij}| \quad f_{a_i} \quad i=1,2,\ldots,n_{-1}$$

Result :- If A is strictly diagonally dominant, then the system Ax=b has a unique solution to which the Jacobi and the Gauss-Seidel method will converge for any initial approximation.

$$Ax = b \equiv \begin{pmatrix} 7 & -1 \\ 1 & -5 \end{pmatrix} \begin{pmatrix} 24 \\ x_L \end{pmatrix} = \begin{pmatrix} 6 \\ -4 \end{pmatrix}$$

A is diag. dominant., but

$$\begin{pmatrix} 1-5\\ 7-1 \end{pmatrix}$$
 is not diag. dom.

In matrix notation:-

$$A = L + D + U \quad \text{with} \quad D = \begin{pmatrix} 7 & 0 \\ 0 & -5 \end{pmatrix}$$
$$L = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad U = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$$

$$D x = -(L+U) x + b$$

In iteration,

$$D x^{(\kappa)} = -(L+U) x^{(\kappa-1)} + b$$

i.e.
$$\chi^{(\kappa)} = -D'(L+U) x^{(\kappa-1)} + D^{-1} b$$

with initial guess $\chi^{(0)}$

$$(D+L)x = -Ux + b$$

In iteration.

$$\chi^{(k)} = -(D+L)^{-1}U\chi^{(k-1)} + (D+L)^{-1}b$$

Algebraically,
Jacobi:
$$\chi_i^{(k+1)} = \frac{1}{\alpha_{ii}} \left(b_i - \sum_{J \neq i} \alpha_{iJ} \chi_J^{(k)} \right)$$
. $i = 1, 2, ..., n$

$$4 \quad GS: \quad \chi_{i}^{(k+1)} = \frac{1}{a_{ii}} \left(b_{i} - \sum_{J < i} q_{iJ} \chi_{J}^{(k+1)} - \sum_{J > i} q_{iJ} \chi_{J}^{(k)} \right).$$

Some Observations: -

$$Jacobi:$$

$$\chi^{(u)} = -D^{-1}(L+U) \chi^{(u+1)} + D^{-1}b$$

$$= M_{3}\chi^{(u-1)} + D^{-1}b , \text{ Arg.}$$

$$M_{5} \text{ is the Jacobi iteration matrix.}$$

$$M_{5} = -D^{-1}(L+U) = D^{-1}(D-A)$$

$$= I - D^{-1}A$$

$$\Rightarrow A \text{ diag. dominant} \Rightarrow ||I - D^{-1}A||_{L^{d}} = ||M_{5}||_{L^{d}} = |m_{4}||_{L^{d}}$$

$$\Rightarrow D^{-1}A \text{ is invertible} \Rightarrow A \text{ is invertible.}$$

$$Let, D^{-1}A \text{ is singular}, \text{ then } \exists \chi \neq 0 \text{ st.}$$

$$Gauss-Saidel :-$$

$$\chi^{(u)} = -(D^{-1}L)^{-1}U \chi^{(u+1)} + (D+L)^{-1}b$$

$$= M_{5}\chi^{(u+2)} + (D+L)^{-1}b.$$

$$M_{6} \text{ is the Gauss. Saidel iteration matrix.}$$

$$M_{6} = -(D+L)^{-1}U$$

$$= I - (L+D)^{-1}A$$

Exn:-
$$4x_1 + x_1 + z_3 = 2$$

 $x_1 + 5x_2 + 2x_3 = -6$
 $x_1 + 2x_2 + 3x_3 = -4$
By Jacobi 4 Gauss - Seidel. (in matrix from).
 $A = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 5 & 2 \\ 1 & 2 & 3 \end{pmatrix}$
 $L = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & 0 \end{pmatrix}$
 $D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix}$
 $U = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$.
Jacobi 5 iteration $\frac{1}{2}$

$$D \chi^{(k)} = -(A + 0) \chi^{(k-1)} + b$$

$$=) \chi^{(k)} = (I - 0^{T}A) \chi^{(k-1)} + 0^{T}b$$

$$D^{T}A = \begin{pmatrix} V_{4} & V_{5} & 0 \\ 0 & V_{5} \end{pmatrix} \begin{pmatrix} 4 & 4 & 4 \\ 1 & 5 & 2 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 & V_{4} & \frac{1}{4} \\ \frac{1}{5} & 1 & \frac{2}{45} \\ \frac{1}{3} & Y_{5} & 1 \end{pmatrix}$$

$$S_{0}, \chi^{(k)} = \begin{pmatrix} 0 - V_{4} & - V_{4} \\ -\frac{1}{5} & 0 & -Y_{5} \\ -\frac{1}{3} & -Y_{5} & 0 \end{pmatrix} \chi^{(k-1)} + \begin{pmatrix} 2/4 \\ -6/5 \\ -4/5 \end{pmatrix}.$$

With zero mitial guess,

$$\chi^{(1)} = \begin{pmatrix} 2/4 \\ -6/5 \\ -4/3 \end{pmatrix}, \qquad \chi^{(1)} = \begin{pmatrix} 1.133 \\ -0.767 \\ -0.700 \end{pmatrix}, \qquad \chi^{(3)} = \begin{pmatrix} 0.867 \\ -1.147 \\ -1.200 \end{pmatrix}, \qquad \chi^{(4)} = \begin{pmatrix} 1.087 \\ -0.893 \\ -0.858 \end{pmatrix}.$$

>

Grauss- Seidel iteration:

$$(L+0) \chi^{(\mu)} = -U\chi^{(\mu-1)} + b$$

=) $\chi^{(\mu)} = -(L+0)^{-1}U\chi^{(\mu+1)} + (L+0)^{-1}b.$

$$D+L = \begin{pmatrix} 4 & 0 & 0 \\ 1 & 5 & 0 \\ 1 & 2 & 3 \end{pmatrix} , \quad (D+L)^{-1}U = \begin{pmatrix} y_4 & 0 & 0 \\ -y_{10} & y_5 & 0 \\ -y_{10} & -y_{15} & y_3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 4 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

and
$$(D+L)^{-1} b = \begin{pmatrix} y_4 & 0 & 0 \\ -y_{10} & -y_{10} & -y_{10} \\ 0 & -y_{10} & -y_{10} \\ -y_{10} & y_5 & 0 \\ -y_{10} & -y_{15} & y_3 \end{pmatrix} \begin{pmatrix} 2 \\ -6 \\ -4 \end{pmatrix}$$

= $\begin{pmatrix} y_1 \\ -\frac{13}{10} \\ -\frac{19}{30} \end{pmatrix}$

$$S_{0} \qquad \chi^{(k)} = \begin{pmatrix} 0 & -\frac{1}{4} & -\frac{1}{4} \\ 0 & \frac{1}{20} & -\frac{7}{10} \end{pmatrix} \chi^{(k-1)} + \begin{pmatrix} \frac{1}{2} \\ -\frac{13}{10} \\ -\frac{19}{30} \end{pmatrix},$$

With zero initial guess, the iteration will be:

$$\chi^{(1)} = \begin{pmatrix} \frac{y_2}{-\frac{13}{10}} \\ -\frac{19}{30} \end{pmatrix}, \chi^{(2)} = \begin{pmatrix} 0.983 \\ -1.143 \\ -0.899 \end{pmatrix}, \chi^{(3)} = \begin{pmatrix} 1.043 \\ -1.043 \\ -0.975 \end{pmatrix}$$

$$\chi^{(4)} = \begin{pmatrix} 1.004 \\ -1.011 \\ -0.994 \end{pmatrix}.$$

Both Jacobi & G.S iterative schenes can be written as:

$$\chi^{(K)} = P \chi^{(K-1)} + 2 \cdots - (*)$$

where P is a constant matorix and 2 is a constant vector.

· · · · ·

.

$$Jacobi: P = M_3 = I - D'A$$

$$Gs: P = M_q = 1 - (L+D)^T A$$

Convergence:
The iterative scheme (*) is convergent
iff every eigen-value of P satisfies
$$|\lambda| < 1$$
, i.e.
the spectral radius $f(P) < 1$.

$$\implies$$
 If $||P|| = \max_{\substack{||X|| \neq 0}} \frac{||AX||}{||X||} < 1$ for some norm, then

=)
$$x^{*} - x^{(k)} = P(x^{*} - x^{(k-1)})$$

=) $R_{k} = PR_{k}$ =) $||R_{k}|| \leq ||P|| ||R_{k}|$

=)
$$P_{k} = P_{k-1}$$
 =) $||e_{k}|| \leq ||P|| ||e_{k-1}||$

Jacobi :

$$P = -D'(L+U)$$

$$= -\begin{pmatrix} y_{a_{11}} & 0 \\ 0 & y_{a_{1n}} \end{pmatrix} \begin{pmatrix} 0 & a_{12} & a_{1n} \\ 0 & 0 \end{pmatrix} A_{-diagonally dominant}$$

$$= \begin{pmatrix} 0 & -a_{12}a_{11} & \cdots & -a_{1n}a_{11} \\ 0 & 0 \end{pmatrix} = \sum_{\substack{n = 1 \\ n = 1}}^{n} |P_{ij}| < 1 \neq i$$

$$= \sum_{\substack{n = 1 \\ n = 1}}^{n} |P_{ij}| < 1 \neq i$$

Then If
$$n=2$$
, Jacobi iteration converges if GS converges.
Pref: $(M) = \sqrt{\left|\frac{a_{x1}a_{x1}}{a_{x1}a_{x1}}\right|}$
 $f(M_{GS}) = \frac{1a_{x1}a_{x1}}{1a_{x1}a_{x2}}$
 $f(M_{GS}) < 1$ if $f(M_{GS}) < 1$
Then For any $h>2$, it is possible for Jacobi iteration
to converge a while GS diverges and conversely.
 $Ax = b$
 $Bx^{(h)} = Cx^{(h+1)} + b$
 $A = B - e$
 $Bx^{(h)} = (B^{-}c) x^{(h-1)} + B^{-}b$
 $A = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 0 \\ b & & 1 & 1 \end{pmatrix}$ for $a, b \in \mathbb{R}$
For Jacobi, $det(\lambda E - M_3) = 0$ gives
 $\lambda^{n} - ab \lambda^{n-1} + (-D^{n+1}a = 0)$
For GS, we get
 $\lambda^{n-1}(\lambda - a(b + (-0^{n}))) = 0$

1)
$$a \ge 1$$
, $b = (-1)^{n+1} = P(M_{qs}) = 0$, $P(M_{s}) \ge 1$

1)
$$a = \frac{1}{2} (-1)^{n+1}$$
 $b = (-1)^n = f(M_{qs}) = 1$ and $f(M_{qs}) < 1$

$$\begin{array}{c}
E_{XM} \\
A_{J} = \begin{pmatrix} 1 & 0 & 0 & -\frac{1}{2} \\
r & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \end{pmatrix}, A_{J} = \begin{pmatrix} 1 & 0 & \frac{1}{2} \\
1 & 1 & 0 \\
-1 & 1 & 1 \end{pmatrix}, P(M_{J}) = 0.92 \\
P(M_{qs}) = 1 \\
\end{array}$$

$$\begin{array}{c}
P(M_{qs}) = 1 \\
P(M_{qs}) = 0.71, P(M_{qs}) = 0.5 \\
P(M_{qs}) = 0.5 \\
\end{array}$$

Jacobi Algorithm:

$$\chi_{i}^{(K+1)} = \frac{1}{a_{ii}} \left[b_{i} - \sum_{J=1}^{n} a_{iJ} \chi_{J}^{(K)} \right], \quad i=1,2,..,n$$

$$J_{\pm i}$$

Gauss - Saidel Algorithm:

$$\chi_{i}^{(k+1)} = \frac{1}{\alpha_{ii}} \left[b_{i} - \sum_{J=1}^{i-1} \alpha_{iJ} \chi_{J}^{(k+1)} - \sum_{J=i+1}^{n} \alpha_{iJ} \chi_{J}^{(k)} \right]$$

ì=1,2..., n.

Banded Matrix :-

If all matrix elements are 2000 outside a diagonally bordered band whose range is determined by K, & K2:

Exa Diagonal if
$$K_1 = K_2 = 0$$

toi-diagonal if $K_1 = -K_2 = ($
upper-toiongular if $K_1 = 0$; $K_2 = N-1$

Exm: -

$$A = \begin{pmatrix} 2 & 3 & 0 & 0 \\ 4 & 1 & 3 & 0 \\ 0 & 3 & 4 & 5 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$
 is a banded matrix
with $K_1 = 1, K_2 = 1$. This matrix can be
easily stoxed as:
 $A = \begin{pmatrix} 0 & 2 & 3 \\ 4 & 1 & 3 \\ 3 & -1 & 5 \\ -1 & 2 & 0 \end{pmatrix}$

Symmetric band Matrix .-

$$A = \begin{pmatrix} 2 & 3 & 0 & 0 \\ 3 & 1 & 4 & 0 \\ 0 & 4 & 2 & 5 \\ 0 & 0 & 5 & 1 \end{pmatrix}$$

$$A^{*} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \\ 2 & 5 \\ 1 & 0 \end{pmatrix}$$

Skyline method :-

If a reparse banded matrix is symmetric and has few zero entries, then it can be stored in single array.

$$A = \begin{pmatrix} 2 & 0 & 3 & 0 & 0 & 0 \\ 1 & 0 & 5 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 6 & -1 & 0 \\ 5 & 0 & 0 & 0 \\ 6 & -1 & 0 \\ 5 & 0 & 0 & 0 \\ 6 & -1 & 0 \\ 5 & 0 & 0 & 0 \\ 6 & -1 & 0 \\ 5 & 0 & 0 & 0 \\ 6 & -1 & 0 \\ 5 & 0 & 0 & 0 \\ 6 & -1 & 0 \\ 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 \\ 6 & -1 & 0 \\ 5 & 0 & 0 & 0 \\$$

$$A' = \begin{bmatrix} 2 & 1 & 3 & 0 & 5 & 5 & 0 & 6 & -1 & 3 & 2 & 1 \end{bmatrix}$$

 $A'' = \begin{bmatrix} 1 & 2 & 5 & 8 & 10 & 12 \end{bmatrix}$

where the elements of A" represent. The element values of each column up to the diagonal position.

=) In skyline solver, two one-dimensional matrices must be employed.