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Chapter 1

Introduction

The Conservation law asserts that, the rate of change of the total amount of substance
contained in a fixed domain G is equal to the flux of that substance across the boundary
of G.

If u is the density of that substance, f is the flux and 7 denotes the outward normal to

G, dS is the surface element on JG, then by the Conseravation law,

d
%(/Gud:c):— 8Gf~77dS (1.1)

T[ The integral in right measures outflow; hence the minus sign is taken |

Applying Divergence theorem, we get:

/ (w+divf)de =0 (1.2)

Dividing (1.2) by vol(G) and shrinking G to a point, where all partial derivatives of u

and f are continuous, we get:

ug +div f =0

"4 We shall see that scalar conservation laws, which we shall define later, have solutions

which are not, in general, global classical solutions. Discontinuous solutions for a Cauchy



problem can arise either spontaneously due to nonlinearities, or as the result of discon-

tinuities in the initial conditions.

4 Admissible weak solutions to the scalar conservation equation are unique. At this
point, we interpret admissible to mean that the solution satisfies the entropy condition.
The selection of the physically relevant solution is based on the so called entropy condition
that assert that a shock is formed only when the characteristics carry information toward
the shock. In our discussion, we shall prove the existence result by Vanishing Viscosity

method and the uniqueness result follow from Kruzkov’s Theorem.

¥ To be precise, in chapter 2, we shall discuss the basic theory of Distribution and
Sobolev Spaces. In the next chapter, we shall introduce the notion of scalar conservation
laws, the Viscous problem and the existence result by Vanishing Viscosity method. In

the last chapter, we shall talk about Kruzkov’s uniqueness result.



Chapter 2

Theory of Distribution and Sobolev
Spaces : Basic Theory

In this chapter, we shall introduce some functional spaces which will be of constant use
in our discussion. Throughout this note, we shall take ) to be an open subset of R™ with

boundary 99Q. Let, L*(2) be the space of all square integrable functions defined in , i.e
L2(Q) :==A{v: [ |v]*dz < oo}
Define a mapping (,) : L?(Q) x L*(2) — R by

(v,w) == [v(z)w(x)dx

Note :- The above mapping is not an inner product, as (v,v) = 0 does not imply

v = 0.
n, v==
Example: Consider 2 = (0,1) and v,(z) = "

0, else
Then, (v,,v,) =0, but v, # 0.



"4 To make L*(Q) an inner product space, define

vzw(:}/|v|2dx = /|w|2d:x.
Q Q
‘="

Clearly, “=”is an equivalence relation. We call, eventually,

(v,v) =0=0v=0 ae.

With this notation, (,) defines an inner product on L?*(€2) and the induced L?-norm

\wH:«uv»%:(lgm%m)%

With this norm, L?(Q2) becomes a complete inner product space, i.e it is a Hilbert Space.

is given by:

§ Definition:- Define the space of all locally integrable functions in €2, denoted by

L},.(€), by:

1
Lloc

(Q) = {v € L'(K), for every compact set K with K C Q}

Example: Note that, e® is in L}, _(0,00), but not in L(0, 00).

loc

Similarly, when 1 < p < 0o, the space of all p-th integrable functions will be denoted
by LP(2). For 1 < p < 0o, the norm is defined by:

1
P
memw=(/hw¢0 ,
Q

[V]]oe(62) := es8 SUPeq [0(2)].

and for p = oo



2.1 Theory of Distributions

In mathematical analysis, distributions (or generalized functions) are objects that
generalize functions. Distributions make it possible to differentiate functions whose
derivative does not exist in the classical sense. In particular, we shall see that, any
locally integrable function has a distributional derivative. Distributions are widely used
to formulate generalized solutions of partial differential equations. Where a classical solu-
tion may not exist or be very difficult to establish, a distribution solution to a differential

equation is often much easier.

§ A multi-index o = (ay, ag, ..., q,) is an n-tuple with non-negative integer elements,

i.e each a; > 0 is integer.
n

§ By an order of a, we mean || = E Q.
i=1

§ Definition:- Define a-th order partial derivative of v as:

dlely

axlo‘l@xg‘” cet 8xn°‘"

D% =

§ Let, C"(Q) := {v : D* € C(Q),|a] < m}. Similarly, define the space C™(f2),
as m-times continuously differentiable functions with bounded and uniformly continuous

derivatives up to order m in Q. And by C*°(Q2), we mean a space of infinitely differentiable

functions in Q, i.e C>(Q) = ﬂ c™(Q).

§ Define supp v:= {z € Q : v(x) # 0}.

Note :- supp v is clearly closed. If it is, as well, compact and supp v CC €2, then v
is said to have ‘Compact Support’with respect to Q. Denote by C§°(£2), a space of all

infinitely differentiable functions with compact support in €.



Example: 1. For Q = R, consider the function

exp (\wl%l> , lzl <1
0, lz| > 1

p(r) =

2. For €2 = R", consider the function

o) = erp (Hz”;z_1> ; el <1
0, ) > 1

Clearly, both ¢, ¢ € C3°(Q).

§ So far, we didn’t define any topological structure on C§°(2). We say ¢, — ¢ in
C°(Q), if the following conditions are satisfied:
(i) There is a common compact set K in Q with K C € such that supp ¢, C K.

(ii) D*¢p, — D¢ uniformly in K, for all multi-indices a.

§ Definition:- C{°(2), with such a structure, is denoted by D(f2), the space of test

functions.

§ Definition:- A continuous linear functional on D(Q) is called a Distribution, i.e
T : D(Q)— R is called a distribution, if 7" is linear and T'(¢,) — T(¢) as ¢, — ¢ in
D(Q).

§ The space of all distributions will be denoted by D’(€2). This is the topological dual
of D().

Lemma 2.1.1: L'(Q) C D'(Q), i.e every integrable function defines a distribution.
Proof :- Assume f € L'(Q). Then, for ¢ € D(Q), set Ty(¢p) := [, foda.

Claim: Ty € D'(Q).

By definition, 7% is linear.

It, thus, suffices to show that, T is continuous, i.e as ¢, — ¢ in D(Q), T¢(¢n) = T¢(o).



Now,

(2.1)

T5(60) — Ty(6)] = ' [ 56, o)

As ¢, — ¢ in D(Q2), 3 a common compact set K in 2 such that, supp ¢, suppp C K
and ¢, — ¢ uniformly in K.

So, (2.1) yields,

Ty(60) — Ty(0)] < /K F(6n — &)l da
< max [gu(z) — B(c)| / flda

zeK

Since, [, |f|dz < co and max |on(x) — @(x)] = 0, Ti(dn) = Ti(¢) as n — oo.
Therefore, T is continuous and hence Ty € D'(Q2).

Now, if f,g € L'(Q2), with f = g a.e., then,

Ts(6) — Ty(¢) = Jo(f — g)¢dz = 0V € D(Q)

So, Ty =T,

Thus, we can identify f as Ty and T¢(¢) = (f, ¢).

Hence, L'(Q) C D'(Q).



"4 The Dirac Delta Distribution

§ Definition:- For x € R", define ¢, by:

02(¢) = ¢(x), ¢ € D(Q)

This, in fact, defines a distribution. Linearity is trivial.

As ¢, = ¢ in D(Q), i.e ¢, — ¢ uniformly on a common compact support, so

5ac(¢n) - an(x) — Qb(X) - 62:(95)

So, 0, € D'(2) and we write
0z(¢) = (02, 8) = d(x)

Note :- The Dirac delta function can not be generated by locally integrable function.

For, if possible, let, f were a locally integrable function such that,

Ty = 6

ie Ty(¢) = 6(6)=o(0), for ¢ € D(R")

For € > 0, it is possible to find ¢. € D(R") with supp ¢ C B(0),0 < ¢. < 1
and ¢ = 1 in B¢ (0).

Now,

But, on the other hand,



Since, f is locally integrable, fBE(O) |f|dx — 0 as e — 0.

ie d(¢pe) — 0, a contradiction.

§ We have two types of distribution:
(i)Regular:- The distribution is said to be Regular, if it is generated by a locally inte-

grable function.

(ii)Singular:- The distribution is called Singular, if it is not regular.

Example:- The Dirac delta function is a singular distribution.

§ Definition(Distributional Derivative):- If ' € D’(Q2), then define D(T') as

(D(T))(¢) = =(T, D(¢)), Vo € D(Q).

§ D(¢) is simply the derivative of ¢. Observe that, (D(7T)) is a linear map.
For, ¢1,¢2 € D(QQ) and ¢ € R,

(D(T))(¢1 +cg2) = —(T,D(¢1 + ¢2))
= —(T, D(¢1)) — ¢(T, D(¢2))
= (D(T))(¢1) + ¢ (D(T))(42)-

For continuity, we first note that, as ¢, — ¢ in D(2), then, D(¢,) — D(¢) in D(Q).

S0, (D(T))(¢n) = =(T', D(¢n)) = —(T, D(9)) = (D(T))(¢)
Therefore, D(T) € D'(12).

§ If T is a distribution, i.e T € D'(2), then a!* order distributional derivative, say
DT € D'(Q), is defined by:

<DaT7 ¢> = (_1)|Of|<T7 Da¢>7 V¢ S D(Q>



Example: Let, 2 = (—1,1) and let, f(z) = |z| in Q.
Clearly, f € D'(—1,1). For ¢ € D(Q),

(Df,¢) = —(f, D)

1

= — | [(@)¢(z)dx

-1

= _/_i(—x)qﬁ'(x) dx—/l x¢/(x) dx

0

Now, ¢(1) = ¢(—1) = 0. Hence,
(Df.¢) = wol’, — / ola)da — wol} + /0 o) d

— /:(_1)¢>(x) dcc—l—/ol ¢(x) dx

= H(z)p(x) dx

-1

= (H,9), V¢ eD(Q).

where,

As (Df, ¢y = (H,¢), Vo € D(Q), s0o Df = H.

<DH7¢> = _<H7D¢>
= — | H(x)¢'(z)dx

- - [ v@a- [ v@a
— 6(0) - 6(~1) — 6(1) + 6(0)

So, DHT = 2§ or D*f = 2§

1

1+ In the above discussion we identify Ty as H. And DH is identified as DTy.

10



2.2 Elements of Sobolev Spaces

§ Definition:- The Sobolev Space H'() is the space of all functions in L?(£2) such that

all its partial distributional derivatives are in L*(€) i.e

HY(Q) :={ve L*Q): v

e, € L*(Q),1<i<n}

§ Define a map (,); : H'(Q2) x H(Q2) — R by,

(u,v); = {(u,v) —|—Z§5 @, Vu,v € H'(Q)

Clearly, (,); forms an inner product space on H*(€2) and (H*(€2), (,)1) is an inner product

space. The induced norm ||.||; on H(Q) is set as:

" du
[Eoafs (u, u)y [Jul|? + ;:1 IIaxill

Now, we state the following result regarding the completeness of the Sobolev Space.

Theorem 2.2.1: The space H'(Q) with |.||; is a Hilbert space.

§ For positive integer m, define the higher order Sobolev Spaces H™({2) as:

H™(Q) :={v e L*Q): D* € L*(Q),|a] <m}

This is again a Hilbert Space with respect to the inner product

(U, V) = Z (D%, D*v)

laj<m

and the induced norm:

=

lullw = | D IID%ul?

laj<m

11



§ In general, define Sobolev Space W™P(Q2) of order (m,p), 1 < p < oo by:
WmP(Q) :={v e LP(Q) : D" € LP(Q),|a| < m}.

This is a Banach Space with norm ||.||,,,, where

s = { 3 [ 1Dl | 1<p <o

laf<m

and for p = oo,

2] mp = max ”Dau||L°°(Q)'
la|<m

§ Note :- (a) When p =2, call W™?(Q) as H™(2) and its norm ||.||,n2 as [|.|lm
(b) W™P(Q) is Banach Space, with WoP(Q) = LP(2).

M Remarks:- D(1) is not dense in H'(£2). To see this, we claim that, D(Q)* in H'(Q)
is not a trivial space.

Assume u € D(Q)* and ¢ € D(Q).

= (W)=Y (55.9)
=1 ¢

= (—Au+u,¢), Yo € D(Q)

So, —Au +u =0 in D(). Clearly, this equation has non-trivial solutions.
Therefore, D() is not dense in H*(Q2). Call H}(f2) as the closure of D(Q2) in H'(Q).

§ Definition(Dual Space):- The dual space of HJ () is denoted by H~!(Q), which

consists of all continuous linear functionals on Hj(€) with the norm:

1£1l-1 = sup{|f ()] : v € Hy(), lv]l < 1}

12



Lemma 2.2.2: A distribution f € H~!(Q), if and only if there are functions fz € L*(2)
such that, f = Z D% f3.

laf<1

"4 Remarks:- The Dirac delta function § belongs to H~!(—1,1), since there exists

Heaviside step function

1, 0<z<1

H(z) =
0, -1<z<0

in L?(—1,1) such that § = DH.

Similarly, we can define the dual space (H'(Q2))" of H(€) with the norm defined by:
£ Wl @y = sup{|f(v)] : v € H'(Q), [Jv]ls < 1}.

Also, the dual space H~™(f) is defined as the set of all distributions f such that, 3
functions fz € L*(Q) with f = Z D® fz. The norm is given by:

la|<m

[Fll-m = sup{|f(v)] : v € Hg" (), [[v]lm <1},

H{"(2) being the closure of D(Q2) with respect to the norm ||.||,,,.

13



Chapter 3

Scalar Conservation Law:Vanishing

Viscosity Method

In this chapter, we shall study the notion of Scalar Conservation law using the notion of
Vanishing Viscosity technique. Given n C' functions f; : R — R, 1 < j < n, we consider

the scalar conservation law:

— =0 3.1
8t = ﬁxj ( )
where, x = (21, %9,...,2,) € R" and t € (0,00).
B :  —0fi(w) ,
Set f(u) = (fi(u), fo(w),. .., fu(u)) so that, divf(u) =) —5.— The equation (3.1)
I .
j=1 J
may be written as
Ju _
En + div f(u) = 0.

Given a function ug : R™ — R, consider the initial condition as,

u(x,0) = up(x),x € R". (3.2)

§ We shall prove that, if ug € L>®°(R"), the cauchy problem (3.1) — (3.2) has a unique

entropy solution.

14



For the existence result, we shall use vanishing viscosity method.

3.1 Formulation of Regularization problem

For any € > 0, we associate the initial value problem (3.1) — (3.2) with its parabolic

regularization:
Oue .
5 +divf.(u) — €eAu,=0, xeR"t>0
U,E(X, 0) = UOE(X)' (33)
where f.(u) = (fie, foes - - - » fne) and wuge are suitable regularizations of the functions f and

ug respectively. Firstly, we shall study the problems of the form (3.3) and then, pass to
the limit as € — 0.
Now, we shall consider the space of Bounded Variation functions, which will be used

frequently later on.

"4 Functions of Bounded Variation

C} (2, R™) denotes the space of C'! vector-valued functions ¢ : Q — R" with compact
support in 2.
Setting @ = (@1, ¢2, ..., ¥n), consider the norm:

1P 2o(@) = max {ilelg Iwi(X)I}-

§ Given g € L} (Q), define the total variation of g as:

loc

Talg) =su{ [ gdivpds s o € CYOR, Iollimo < 1]
Q

§ Definition:- A function g € L} (Q) is said to have a BoundedVariation in Q, if

loc

TVal(g) < oo, i.e
BV(Q) := {g € L,.(Q) : TVqa(g) < oo}

loc

15



§ Now is time to nurture some multi-variate calculus facts.

Theorem 3.1.1: (Gauss-Green Theorem) Suppose u € C1(€2). Then,

/umidx:/ u/'dS, (i=1,2,...,n)
Q o0
1,2

where 7 = (v, V%, ..., V") is the outward unit normal to €.

Theorem 3.1.2: (Integration by Parts) Assume u,v € C1(€2). Then,
/uxivdX: —/uv%dxjt/ wr'dS, (i=1,2,...,n)
0 Q G

Theorem 3.1.3: (Green’s Formulas) Assume u,v € C%(Q). Then

(i) /Q Audx —dS

89

(17) /Vu.VvdX = —/vAudx—i—/ a—qfvdS.
Q Q a0 OV

Lemma 3.1.4: Wh(Q) C BV(Q).
Proof :- For g € WH(Q) = {v e L}(Q) : g—gﬁ: € L'(Q),1 <i<n}and ¢ € C(Q,RY),

o _ Do
/dilvgodx = /Qg Z ar, dx
=1

= —/Qgradg.godx (3.4)

2 ...,v") is the outward unit normal to Q.

where 7 = (v}, v
So, TVq(g) < [, |grad g| dx < co.

Hence, g € BV(Q) and so, W (Q) € BV(Q).

16



" Remarks:- The above inclusion is proper. To see this, consider the function:

flz) =[z], z€(0,2).

f being a monotone function, it is of Bounded Variation.

Claim: f ¢ W(Q), in the sense, Ty ¢ WH(Q) We have, for ¢ € C}(Q2,R),

(D(Ty),¢) = chb

Therefore, D(Ty) = ¢;. But, as ¢; is a singular distribution, D(T) does not correspond
to an integrable function. So, f & Wh1(Q).

Proposition 3.1.5: Let {g,}, be a sequence of functions of BV(2) such that g, — ¢
in L} _(Q). Then we have

loc

TVa(g) < liminf TVq(gy,).
n—oo

Proof :- Assume ¢ € C}(€2,R") such that, ||§E||LOO(Q) <1
We have,
/ gn dive dx — / gdivpdx, asmn — oo.
Q Q

But, [, gn divédx < TVg(gy), and so,
/ gdive dx < liminf TVq(gy).
Q n— o0
As the above inequality holds for all ¢ € C§(Q,R™), so

TVa(g) < liminf TVq(g,).

n—o0

17



Lemma 3.1.6: The space L'(2) N BV(Q) is a Banach Space for the norm

9]z, @nevie) = 9]l ) + TVal(g).

Lemma 3.1.7: Let, €2 be a bounded subset of R” with a Lipschitz continuous boundary.
Then the canonical imbedding of BV(2) into L'(Q) is compact.

3.2 Notion of Measurable Functions

In this section, we shall see some measure theoretic concepts, like weak and strong mea-

surability of a function, special spaces.

§ Definition(Weakly measurable function):- If (X, M) is a measurable space and
B is a Banach space over a field K (usually the real numbers R or complex numbers C),
then f: X — B is said to be weakly measurable if, for every continuous linear functional
g : B — K, the function

gof: X —>K:z— g(f(x))

is a measurable function with respect to M and the usual Borel og-algebra on K.

§ Definition(Strongly measurable function):-
(i) Suppose, X is a Banach space. A function s : [0, T] — X is called Simple, if it has

the form:

where, E;’s are Lebesgue measurable subsets of [0, T] and u; € X.
(ii) A function f : [0, T] — X is said to be Strongly Measurable, if there exist a sequence
of simple functions {s;}x, s; : [0, T] = X, such that, s;(t) — f(¢) a.e. on [0, T].

18



§ Denote by B(0, T; X)), the space of continuous and bounded functions from [0, T] into X
and by LP(0,T; X), 1 < p < 0o, we mean the space of functions v : t € (0, T) — v(t) € X,

which are strongly measurable with respect to the Lebesgue measure and satisfy:

1
T »
vl zeo,ex) = (/ ||v(t)||xpdt) < oo for 1<p<oo
0

or |[v|lemx) = €88 Sup.eq||v(t)|lx < oo for p= o0

Next, we introduce the space

ov

W(0,T) = {ve L*0,T; H'(R")) : 5 € L*(0,T; H*(R™))}.
3.3 The Viscous Problem
Consider the non-linear parabolic problem:
ou )
E“_lef(u) — alAu=0, xeR", t>0 (3.5)

u(x,0) = wup(x)

where, u is a function from R™ x [0, 00) to R.

We first prove the existence of a solution of (3.5) by using fized point technique.

Lemma 3.3.1: Assume f = (f1, fo,..., fn) is a C! function, which satisfies the global
Lipschitz condition:

[£(u) = £(v)[| < Mlu—v|, Vu,veR.

Then, if uy € L*(R™), then the problem (3.5) has a unique solution u, which belongs to
w0, T), vT > 0.
Proof :- Without loss of generality, let, f(0) = 0. Also, let, A > 0 be a fixed parameter.

Set, v =wuexp(—At).

19



Note that, u is a solution of (3.5) if and only if, v is a solution of:

% +Av — alAv=—exp(—At)divi(exp(At)v) (3.6)

v(x,0) = wup(x)
Now, let v € L2(R" x (0,00) be a fixed function. Consider the following linear parabolic

problem:

%—ZU +Aw — aAw=—exp(—=At)divf (ezp(At)v), x€R", t>0 (3.7)

w(x,0) = wup(x)

Now, we have,
exp(=At) [|[f (exp(At) v)|| = exp(=At) [ (exp(At) v) — £(O)[| < M]v|
So,
exp(—At) f (exp(At)v) € L*(R" x (0, 00))
and therefore,
exp(—At)divf (exp(At)v) € L*(0,00; H '(R™)).

Now, we shall state a result regarding the existence of solution of a linear parabolic
equation.
[ Result:- Consider the linear parabolic equation given by:

ou
En +Au — alAu=gyg
u(x,0) = wup(x)

where, a > 0 and A € R are given constant. If ug € L?(R") and g € L?(0, T; H~*(R")),

then there exist a unique solution u € W (0, T) of the above equation.]

So, (3.7) has a unique solution w € W (0, 00). Set the mapping

Fy\: L*(0,00; L*(R™) — W(0,00) by

v o= w= F\(v)

20



We shall, now, prove that, for large A, F) is a strict contraction in L*(R™ x (0, 00)).
Let, vy,v9 € L*(0,00; L*(R")) and w; = F\(v;). Suppose, w = w; — wy. Therefore, for
any z € H'(R", we get from (3.7),

<2w(',t),z>—a Aw(-,t).zdx—l—)\/ w(-t).zdx =
ot Rn n

exp(—At) {divf (exp(At)vi(-,t)) — divf(exp(At)va(-,t))}.2dx

R

Using Theorem 3.1.2 and Theorem 3.1.3, we get,

n

(%w(-,t),z)+a/ gradw(-,t).grad zdx + )\/ w(-,t).zdx =

exp(—At) {f (exp(At)vi(-,t)) — f(exp(At)va(-,t))}.grad zdx (3.8)

Rn

Let us choose, z = w(-,t) and integrate over (0,t). Using the Green’s formula given

/tl2 {(%u(-,t}, v) + (u, %v(-,t))} dt = {(uv)(x,t2) — (uv)(x,t1)} dx, for w,v € W(0,T)

R

Choosing u = v = w and noting that, w(-,0) = 0 in (3.8), we get,
1
5 [0 D2 eny / {allgradw(:, s)lI2qn) + Allw (-, )% 2@n) } ds
< M/ |(v1 —v2) (-, 8) || L2(mmy ||grad w(-, s)|| 2(mn) ds
0

Note that, zy < az® + (55) y*. Taking z = ||grad w(-, s)|| r2r~) and

y = M{|(vi — v2)(-, 8) || z2(rn), We get,
1 2 ! 2
> [lw(- 1)l L2®r) T A [w(-, s)|l L2(Rn) ds
2 0

M2 t
(G ) [ 10 = o s

As t — oo, we obtain,

M2
[Jwr — w2||2L2(0,oo;L2(R”)) < <4 )\) [(v1 —v2)(:, 5)||2L2(o,oo;L2(Rn))-

Therefore, if ( ) <1l,ieif, A > ( ) then F\ becomes a strict contraction mapping
and has a unique fixed point v € L?(0, 00; L*(R™)).
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Also, v satisfies (3.7) and belongs therefore to W (0,00). Finally, observe that, the
function u = exp(At)v belongs to the space W(0,T), for all T > 0 and is the unique
solution to (3.5).

Now, we shall quote two results from S.Kesavan’s “Functional Analysis and Applica-

tions” as follows:

Lemma 3.3.2: Let, G : R — R be a Lipschitz continuous function with G(0) = 0.
Assume, Q to be an open subset of R". Then, for all v € H*(Q), G ov € HY(Q), and,

ov
= (& <i<n.
axi(Gov) (G ov)axi, 1<i<n

Lemma 3.3.3: Let,  be an open subset of R”. Then, for all v € H(R"), |[v| € H'(R")
with

grad |v| = sgnv grad v

and the mapping v — |v| is continuous in H*(R™).

Proof :- By previous lemma, for v € HY(R"), [v| € H(R") and grad |v| = sgnv grad v,
letting G(v) = |v|.

Let, v, = v in H'(R™). Then, we can extract a subsequence {v,,}, such that,

vy, converge weakly in H'(R™) to a limit which is necessarily |v| (as |v,| = |v| in L*(2)).
Also, || |vn] |2y = || [0] || 2 ny- So, the sequence |v,| converge strongly® in H'(R") to

lv|. Hence, v — |v] is a continuous function. !

1+ § A sequence of points {z,,} in a Hilbert space H is said to converge weakly to a point z in H,
if (z,y) = (x,y), for all y € H.
Here, (-, -) is understood to be the inner product on the Hilbert space. The notation x,, — x is sometimes
used to denote this kind of convergence.
§ Weak convergence is in contrast to strong convergence or convergence in the norm, which is defined

by ||z, — x| — 0, where ||z| = \/{x,x) is the norm of z.
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Lemma 3.3.4: Let, v € W(0,T). Then, vy = max{v,0} belongs to L*(0,T; H'(R™)) N
B(0, T; L2(R™)) and Vi1, t5 € [0, T,

2 v
2/ <E(a $),v4(v,8)) ds = [luy (-, t2)|| L2(R") ||U+<'7t1)||2L2(R") (3.9)
t1

Theorem 3.3.5:  Assume that, f is a C! function. If uy € L?*(R") N L>°(R"), the
problem (3.5) has a unique solution w, which belongs to W (0,7") N L>*(R™ x (0,7)), for

all T' > 0. Moreover, u satisfies the bound
||U(,t)||Loo(Rn) S ||U/0HLOO(R7L) a.e. ln (O,T)
Proof :- Consider the function ¢ € C§°(R) satisfying,

Lo fr] < luollpoo mm)
0, |r| > |luollpeegny + 1
Set, gj =¢o f;,1<j<nandg= (91,92, 93, - > Gn)-
g, being a C'*° function with a compact support, satisfies Lipschitz condition. By Lemma-

3.3.1, there is a unique u € W(0,T) for any 7' > 0 such that,

?)t +divg(u) — aAu=0 (3.10)

u(x,0) = wup(x)
Now, we shall prove that, v is indeed a solution of (3.5).
Assume v = u — ||tug|| oo (rn). To show that, v, = 0.
Since, |(e — €)1 | < |e| for ¢g > 0, we have, |vy(x,t)| < |u(x,t)| and therefore,
vy (x,t) € L*(R"™), for all .
Also, since u(-,t) € H'(R") for a.e t and gradv(-,t) = grad u(-,t), we have
v(-,t) € HY(R") a.e and by Lemma-(3.3.3), vy (-,t) € H'(R"), for a.e t.

Now, we can write

ou
E—aAu——dlvg Zgl

Now, for any 2z € H'(R"),

axl
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Now, by using Theorem-3.1.3, we get after taking z = v, (-, 1),

(%v(.’t),mr(.,t» +a /n gradv(-,t).grad vy (-, Z/n gi(u(-,t

But, by Lemma-3.3.2,

gradv.gradv, = |graduv,|?
d 8U+
an vy = v
8;1:Z- + 8331 +

So, integrating over (0,t) and using Lemma-3.3.4,

1 t
3 oG Py = s (O} + 0 [ llerad v )Py

: ( vy (1) dx

t
< M/ lgrad vy (-, ) || L2@n) |0+ (-, 8) [ 2(rr) ds
0

Since, v, (+,0) = 0, so

M2 t N
o o any < G [ o o) ey

[ Using A.M.> G.M. inequality, we get zy < ax? + t 2.

Take z = [[grad vy (-, 5)|| L2y, ¥ = M ||v4 (-, 5)||L2mny to get the above inequality.|

Therefore, by Gronwall’s Inequality,

vy (1) = (u(-,t) — |luollLoemny) + = 0.

[IfU(t) <C’fO s)ds, with U(t) > 0, for all t > 0, then U(t) = 0 a.e.
Taking V(¢ fo s)ds, we get, 42 < CV(t)

ie exp(—C’t) V(t) <0,ie V(t) =0 and so, U(t) = Oa.c.]

Similarly, we get,

(=u(-st) = lluoll oo @)+ = 0

Therefore, combining the above two result,

Hu(‘,t)HLOO(Rn) S HUOHLOO(R’VL) a.e. in (O,T)

So, g(u) = f(u) so that, u is a solution of (3.5) satisfying the required bound.
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Now, it suffices to show the uniqueness of this solution. Assume uq, us to be solutions
in W(0,7) N L>*(R"™ x (0,7")). Consider the truncated function g of f on the interval
{ueR: |ul < 1;2%}5(||UZ'HLOO(R’VLX(07T))>}. Then, g satisfies a global Lipschitz condition and
both u;, uy satisfy the equation (3.10). So, by uniqueness result in Lemma-3.3.1, u; = us.

In general, we can state the following theorem.

Theorem 3.3.6: Suppose f € C™ and ug € H™(R™) N L>(R™) for some integer m > 1.
Then the solution of the problem (3.5) satisfies for all 7" > 0,

u € L*0,T; H™(R™) N B(0,T; H™(R™))
ok L2(0,T; H™1=2K(R™) N B(0, T; H™2k(R™)), for m > 2k.
— €
ot L*(0,T; L*(R™)), for m = 2k — 1.

§ Now, we shall discuss two results, that will be used to study the properties of the

solution. Firstly, we introduce a C? function x : R, — R by,

1, 0<s<1i
x(s) = ¢ > 0 and a polynomial, % <s<1
e, s>1

For R > 0, define ¢i : R* — R by,

]

or(x) = X (§> xeR"

Lemma 3.3.7: There exists a constant C' > 0 such that,

lgrad pp| < C%
PR
and |[Apg| < Cﬁ
Proof :- We have, grad pr(x) = % x’ <ER|> 7 and

Apgr(x) = div(grad pr(x))
— div(og), taking o(x) = 11’ () ond gl =
= grad¢.g+ ¢divg
- 1 / |X|) n—1 1 //<|X|)
-~ X (E T "B\ R
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Now, there is a constant C' > 0 such that,
IX'(s)] < C'x(s)
IX"(5)] < C'x(s)

Therefore, |grad pr| < C £E.

Also,

C '
< _

So, for [x| > &, |Apr| < & ¢r(x).

and for, |x| < £, Apg(x) = 0 and hence the lemma holds trivially in this case.

Lemma 3.3.8: For v,¢ € H*(R"),¢ > 0,

Rn

Avsgn(v) i dx < / lv| A dx.
R’ﬂ
Proof :- Consider the piecewise linear continuous function:

-1, r< -4

Jg(?"): g, —€§T§9,9>0
1, r>40
Using Theorem-3.1.3, for v,¢ € H*(R"),

/ Av Jy(v) (x) dx = —/ T5(v) |arad vf? o dx — / erad v.grad (x) Jp(v) dx
As Jy > 0and ¢ > 0, so

/ Av Jp(v) P(x) dx < —/ grad v.grad ¥ (x) Jy(v) dx
n R"l

As 0 — 0, we get,
/ Avsgn(v)pdx < —/ grad |v|.grad ¢ dx
R n

< / (0| Adp dx
Rn

Hence the result follows.
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Theorem 3.3.9: Suppose f € C™ and vy € H™(R") N W21(R"), for some integer
m > 5 + 2. Define

M = sup{|f'(w)] : w € R, |w| < ||uo|| oo mn }-
Then, the solution u of (3.5) satisfies for any ¢ > 0:

(@) Juls Ollomn) < [luoll oo n).-

(b) / u(x,t) dx = / wo(x) dx.

© | §;< " "

(d) "E(?t>“LI(R") S M ngadu()HLl(Rn)n +a HAuoHLl(Rn),Vt € [O,T]

(6) ||u('>t)||L1(]R”) < ||U0||L1(Rn) + MT ||gradu0||L1(Rn)n

Proof :- We have, H™(R") = W™2(R") C L>(R"), for > 1. So, by Theorem-3.3.6,
the solution of (3.5)

w € L*0,T; H™™(R™) N B(0, T; H™(R™))

and
% € L*(0,T; H™ *(R™) N B(0, T; H™*(R™))
and satisfies (a).
We have,
%—{—dwf( ) — alAu=0 (3.11)

Differentiating with respect to x;,

0%u _
ﬁtﬁxz xz ut Z axj ox; filuw) =0

Multiplying both sides by sgn(%), we have

0? Ou ou Ou ou , 0?u Ou
Do, i een(ar) = fin) g g sen(a ) + 5w s
y, L ou 8u , d |0u
0 , ou
= 8_% (fj(u) oz, )

27



Therefore,

9
ot

ou
8xi

ou
a.fl)'i

"0 , ou ou
— | f —alA =0
Multiplying (3.12) by ¢r and integrate over R™,
0 ou u
E/n ppdx = /n f(u) oz, .grad pr dx

8[EZ‘
ou ou
+ a /Rn A (8@) sgn(axi)adex

Taking in v = % and ¥ = pr Lemma-3.3.8, we get,

T

ou ou
/Rn A (3961) sgn(axi)ngdx < /n . Apprdx
So, from (3.13),
0 ou ou
a/n oz, prdx < /n f(u).grad pg oz, dx
Aprd
—+ a/ P PYRrdxX
Thus, using Lemma-3.3.7, we get,
9 / Oul wax< & [ 124 o, ax
Ot Jou |07 TR =R fon |02y | TR
Integrating over [0, t],
ou ou
1 dx — : d
/Rn axz(u )‘ PR aX / 8:10,(’0) PYrax
—/ /n 8% )| prdxds
Hence, by generalized Gronwall’s inequalityT,
Ju C Ct du
1t dx < [14+ =t — d
[ o] enax < (14 GreanSD) [ |24 6.0 enx

24 Let, U(t) be a nonnegative, integrable function on [0, T, for which
t
U(t) § Cl / U(s)d8+02.
0

for constants Cy,Cy > 0. Then,
U(t) < Co {1+ Citexp(Cit)}

a.e in [0, T7.
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NOW, as R — oo, We have,
/ ( )‘ dx < /
R™ 8$Z R™

Similarly, multiplying by sgn(%) g followed by differentiating (3.11) with respect to t

ou
Oxi

<-,o>\ dx,

which proves (c).

and arguing as above, we get,
ou ou
||E(-,t)\|L1(Rn) < ||§('>0)HL1(R")

Now,

%(-,0) = —divf(ug) + a Aug

= —Zf Up) —+aAu0
Thus, we get,
U
HE(, O)HLI(Rn) < M ngad uo”Ll(Rn)n “+a HAUOHLl(R”)a
which proves (d).

Multiplying (3.11) by sgn(u) ¢r and integrating over R™,

0

B ., . Ou
ot Jo lul prdx + ; - fi(u) a—xjsgn(u)@RdX

- a Ausgn(u) prdx =0
Rn

Using Lemma-3.3.8 and Lemma-3.3.7, we get,

0
—/ lulprdx < a / |u| Aprdx + M lgrad u|pg dx
Rn n R

ot
C
a4 lu| prdx + M lgrad u|pg dx

)
R R’I’L Rn

Integrate with respect to t and letting R — oo, we get,

t
|‘u(-,t>HL1(Rn) S HUOHLI(Rn) —|—M / ngadu(.,s)HLl(Rn) dS
0

Also,

ou 8u0
||8$iHL1(Rn) < oz, |21 (mny
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Thus, we get,
HU(, t)HLl(R”) S HUOHLl(R") —+ MT ngad U()HLI(]Rn)n.
which proves (e).

Now, it remains to prove (b). Multiply (3.11) by ¢ and integrate over R,

%/Rnugolgdx - a Auprdx

%/ uprdx + a VuVpgdx

- / f(u).grad prdx =0
R

So, we get,

aC

0 C
E/Rn upprdx SE /n |f(u)| or dx + ® | |Vu| dx

Now, as R — oo, the R.H.S in the above inequality tends to 0. Thus,

/n u(x,t)dx = /n up(x) dx.

This completes the result.

3.4 Existence of an Entropy Solution

We use the vanishing viscosity method in order to prove the existence of an entropy
solution u. Assume ¢ € Cj°(R"™) be a function such that,

(1)  ¢(x) > 0 and its support is contained in the unit ball of R".

(i1) (x)dx = 1.

R

(i) ¢(=x) = ((x).

For all € > 0, set
1 X
) ==¢(3).

Assume, uge = ug * (. and fj. = f; * (. Then, f. = (fic, foe, - .., fne) is @ C* function.
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Lemma 3.4.1: Assume uy € L'(R") N L>(R") N BV(R"). Then, uo. € H™(R™) for all

m and satisfies the bounds:

for some constant C.

a) el ey < Jluol| L mny

(a)

) / () dx = / o) dx
() [lwoell oo ®ny < ||uoll Lo mmy

(d) [lgrad upel| 1 @ny < TV (uo)

(e)

C
e HAUOEHLl(R") S ?TV(UQ)

Lemma 3.4.2: Assume that uy € L*(R™) N L>(R™) N BV(R™). Then, the regularized

problem (3.3) has a unique C'* solution, which satisfies for any ¢ > 0,

a) |ue(-, )| oomny < lluol|Loe @y

)
b) / (%, 1) dx — / 1o () dx.

(
(

(@) llgraduc(e,Bllorery < TV (o)
(@) || L

(e)

T )]l @ny < CTV (uo)

e ||ue(-,t)||L1(Rn) S ||u0||L1(R") + OTTV(U(])

Proof :- Since by previous lemma, uo. € H™(R"), for all m > 0 and £, is a C* function,

we may apply Theorem-3.3.6. So, the problem (3.3) has a unique solution u, such that,

oAl

5 € B(0,T; H™2F(R™)).

Hence, u, is a C*° function. Now, appeal to Theorem-3.3.9 along with Lemma-3.4.1 to

get

[e (s Ol Loy < Mol | Lo @y < luol| Lo @)

u(x,t) dx = / une(x) dx = / ug(x) dx.

||grad Ue('; t) ||L1(Rn) S ||grad quHLl(R") S TV(U())
ou,
and H ot (‘,t)HLl(Rn) S J\j6 ||gradUOEHL1(Rn) +€HAU/06HL1(R”)
S Me TV(UQ) + Cl TV(’LLQ)
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where, M, = sup {|£.(s)| : |s| < |Juoe||z(mn)}. Since,

1) = [ gts =060 a0

we get, M. < sup{|f(s)| : |s| < |Juo|lpeemn) + €} < Co

so that,
ou,

I3

()| L1 eny < (Cr+ C2) TV (up).

Lastly, for 0 <t < T,

IN

||U€(', t)“Ll(R”) ”quHLl(R”) + ]\4€ T ||grad quHLl(R")

N

HUOHLl(R") + Cs TTV(U())

This completes the lemma.

X4 A General notion of Entropy

§ Given any smooth solution u of

ug + div (f(u)) =0, (3.14)
consider
20w+ L rw=0 (3.15)
875 Y = 8xj J 4= '

where U and Fj are sufficiently smooth functions from R into R. Also we have,

Ulu)fi(u) = Fi(u),1 <j <n. (3.16)

J

Definition:- Assume that, 2 is a convex subset of R. A convex function U :  — R
is called an entropy for the system (3.14), if there exist Fj : Q@ — R, called entropy fluz
such that (3.16) holds.

Theorem 3.4.3:  Assume that (3.1)-(3.2) admits an entropy U with entropy fluxes

F;,1 < j <n. Let, {uc} be a sequence of sufficiently smooth solution of (3.3) such that,

(@) el oo ®rx(0,00)) < K.

(b) uc—uase—0 ae inR" x (0,00)
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Then, u is a solution of (3.1)-(3.2) and satisfies the entropy condition:
0 "0
—U —F;(u) <0

in the sense of distributions on R™ x (0, 00).

Theorem 3.4.4: Assume ug € L'(R")NL>®(R")NBV(R") and fis a C! function. Then,
the given problem (3.1)-(3.2) has an entropy solution w.

Moreover, we have u € L*(R™ x (0,00)) N B(0,T; L'(R™)) for any T > 0 and u(-,t) €
BV(R") for all ¢t > 0 with

(@) [l Ol Lo @ny < Jluol[zoe@ny a.e
(b) TV(u(-,t)) < TV(ug)
(© / (%, t2) — u(x, 11)] dx < C TV (up) [ts — 2], for 1,8 > 0
Proof :- Consider a sequence of solutions {u,}. constructed by the vanishing viscosity
method of the equation (3.3). By Lemma-3.4.2, the sequence {u, }. is bounded in L>(R" x
(0,00)) N WL (R™ x (0,00)). Let, {K,}, be a countable increasing sequence of compact
subsets of R™ x [0, 00), which cover R" x [0, 00). Now, taking Theorem-3.1.7 into account,
we can extract a subsequence, from the sequence {u.}., converging almost everywhere in
L'(K,), for each n. So, using the diagonal extraction procedure, we obtain a subsequence,
still denoted by {u}., such that
[|tel| Loo (R x (0,00)) < |10 ]| Lo ()
and
u. — win L (R™ x (0,00))
ue — uin R™ x (0,00)
Now, we check that, the limit w is an entropy solution of the given problem (3.1)-(3.2).
We have ug. — up in L'(R™) and f, — f uniformly on compact subset of R so that
”fe(ue> - f(”e)HLOO(R"X(O,oo)) — 0
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Since, f(u.) — f(u) in L]

Le(R™ x (0,00))™ a.e. we obtain

f.(u.) — f(u) in Lj,.(R™ x (0,00))".

Hence, arguing as Theorem-3.4.3, we conclude that, u is an entropy weak solution of
(3.1)-(3.2), which satisfies (a).
Claim: u. — u in B(0,T; L}, (R™)) for any T > 0. (A)

loc

It follows from Lemma-3.4.2 that, u. remains in a bounded set of B(0, T; W (R")) and

9us remains in a bounded set of B(0,T; L'(R™)).

Let, €2 be a bounded subset of R" with a smooth boundary. Now, for 0 <t; <ty <T)|

2 ou
Ue(-, 1) —uc(-,t1) = (-, s)ds
()=o) = [ G

1

A\

2 Ou,
so that Hue(.,tQ)—uE(.,tl)HLl(Q) < / | oy |]L1(Q)ds
t

and |Jue(-,t2) — ue(-, t) |1 < C’ITV(UO) [ta — t1] (3.17)
Hence, the sequence {u.}. is uniformly equicontinuous from [0,7] in L'(Q2). Since the
canonical imbedding from W(Q) into L'(Q) is compact, {u.(-, )} remains in a compact
subset of L'(Q).
Now, apply Arzela Ascoli’s Theorem, which says that, every bounded and equicontinuous
sequence in C'(X) has a uniformly convergent subsequence, to extract a subsequence from

the sequence {u.}., still denoted by {u.}. such that
u. — u in B(0, T; L'()).

By using a collection of compact subsets of R™ and the diagonal extraction procedure
again, we get,
ue — win B(0,T; L;, (R™))
Claim: w € B(0,T; L*(R™)).
Given any bounded subset Q2 of R" and for any ¢ € [0,77], it follows from Lemma-3.4.2
that,
lue (-, )| L1 ) < Co = |luo|| 1 @ny + CT TV (ug)

and so,

u(-, )] 1) < Co.
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Since it holds for any 2, we get that, u(-,t) € L*(R™). Similarly, it follows from (3.14)
that,
HU,(, tg) — U(', tl)HLl(R”) S CTV(U0> |t2 — tll

which proves our claim as well as (c).

Lastly, assume ¢ € C§(R"), ||@||p®n) < 1. Then by part(c) of Lemma-3.4.2,

/ uc(-,t)divodx = —/ grad u(-,t).¢ dx
TV (uo) ||l oo rm)
using (A) / u(,t)divepdx < TV(ug),Vt >0

IN

Hence,

TV(u(-, 1)) < TV(up), ¥t > 0.
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Chapter 4

Kruzkov’s Uniqueness Result

We now turn to the uniqueness of the entropy solution. Let us choose the entropy function

U and the entropy fluxes Fj, defined as previous chapter, as:
Uluw) = |u—kl,keR.
Fj(u) = sgn(u—k) (f;(u) = f;(k)), 1 <j <n.

Lemma 4.0.1: An entropy solution of the given equation (3.1)-(3.2) satisfies:

| A b G st = 1) DD (50— ) Fobaxar =0 (4)

j=1
for all £ € R and any function ¢ € C§°(R" x (0,00)),¢ > 0.
Proof :- Let, G be a C"* function such that,

G(z) = |z|,|z] > 1 with G" > 0.

G.(z) = eG ((I_k)>

Set

€

so that G.(z) — |z — k| as e — 0. Moreover, since G, is a convex smooth function, we

get

9 G ) + divF(u) < 0

5 Ce(u ivF (u) <

where Fe(u):/ Gl (v)f(v)dv
k
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So, for all ¢ € C5°(R™ x (0,00)),¢ > 0,

/Ooo/n {Ge(u)%—kiﬂj(u)g—z} dx dt >0 (4.2)

Now, GZ(v) approximates the function sgn (v — k), so that,

F.(v) — f(v) — f(k), ifv > k.
F.(v) — f(k) — f(v), ifv < k.

Now, since ¢ has a compact support, taking limit in (4.2) as € — 0, we get,
>0 0¢ - 0¢
| [ u=h G sema = >~ (5(0) = £0) g dcar 20
This completes the proof.
8§ Now we shall state couple of results before going to the main result.

Lemma 4.0.2: Let, u,v € L>®(R" x (0,00)) be two solutions of (3.14), which satisfy the

entropy condition in Lemma-4.0.1. Then we have,

9 (Ju o) + div(san(us — v) (Fu) — f(0)) < 0

in the sense of distribution on R™ x (0, c0).

Lemma 4.0.3: Assume f satisfies the Lipschitz condition

|f(u) — f)| < M |u—v|,YVu,v €T ={ueR: |ul <R}
Then the function (u,v) — sgn(u — v) (f(u) — f(v)) satisfies the Lipschitz condition:
[sgn(u —v)(f(u) = f(v)) = sgn(u* —vx)(f(ux) = fvx)] < M (Ju —u* [+ |v—v*]),

for all u, ux,v,vx € I'g.

Proof :- Assume g(&,w) =sgn(é —w)(f (&) — f(w)).
We have for all w € 'y,

Deg(§,w) = sgn(€ —w) f'(€), for almost all £ € T'g

and similarly D, g(§,w) = —sgn({ —w) f'(w), for almost all w € T'x
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Therefore,

[sgn(u —v)(f(u) = f(v)) —sgn(ux —vx)(f(ux) = f(vx))| = |g(u,v) = g(ux, vx)|

< |(u — wk) De g(ux, vx)| |(v — vx) D, g(ux, vx)]|

IN -+

M (Ju=wx [+ v —vx])

Hence the result follows.

Theorem 4.0.4 [Kruzkov] Let uw and v be two entropy solutions of (3.1)-(3.2) as-
sociated with the initial data ug and wvg, both belonging to L*°(R"), such that u,v €
L=(R™ x (0,00)) N B(0,T; Lj,.(R™)) for all T > 0. Then, setting

M =max {|f"(&)| : 1] < max {[Ju]] Lo @nx (0,000 |V Lo (®n x (0,000 } }

we have,

u(x,t) —v(x,t)|dx < (X)) — vo(x)| dx .
/XISR’< )~ vl 1)l </ [o(x) = vo(x))| (4.3)

|x|<R+Mt

Proof :- Given two positive numbers R and T, we integrate the inequality in Lemma-

4.0.2 on the set:
Drr={(x,t) e R" x (0,00) : |x| < R+ M(T —t),t € [0, 7]}
Thus we get,

w(x,T) —v(x,T)dx — up(X) — vo(x)| dx
/x|<R' (x.T) - v(x.T)| /|X<R+MT1 (%) - ()|

+ /E {lu —v|ny + sgn(u — v)(f(u) — f(v)).nx} do <0

where, ¥ = {(x,t) € R" x (0,00) : [x| = R+ M(T —t),t € [0,T]} is the lateral surface
of Drr and n = (ng, n;) is the unit outward normal to Xp 1.

Since, |sgn(u — v)(f(u) — f(v)).nx| > —M |u — v||ny|, we get,
|u — v ng + sgn(u — v)(f(u) — f(v)).nx > |u—v|ny — Mlu —v||ng| =0
on X, so that the result holds.
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Corollary 4.0.5 :- Assume ug € L'(R") N L>®(R") N BV(R") and f is a C! function.
Then the entropy solution u of problem (3.1)-(3.2) given by Theorem-3.4.4 is unique.

" Remarks:- The entropy solution depends continuously on the initial condition .
Also, there is a more general result, which says that, if ug € L>(R"), then, the given

problem (3.1)-(3.2) has a unique entropy solution u € L*(R" x (0,7)) with

”u('7t)||Loo(Rn) S HUOHLoo(Rn), for almost all ¢ Z 0.
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